【題目】如圖,某大型水上樂(lè)園內(nèi)有一塊矩形場(chǎng)地米, 米,以為直徑的半圓和半圓(半圓在矩形內(nèi)部)為兩個(gè)半圓形水上主題樂(lè)園, 都建有圍墻,游客只能從線段處進(jìn)出該主題樂(lè)園.為了進(jìn)一步提高經(jīng)濟(jì)效益,水上樂(lè)園管理部門(mén)決定沿著修建不銹鋼護(hù)欄,沿著線段修建該主題樂(lè)園大門(mén)并設(shè)置檢票口,其中分別為上的動(dòng)點(diǎn), ,且線段與線段在圓心連線的同側(cè).已知弧線部分的修建費(fèi)用為元/米,直線部門(mén)的平均修建費(fèi)用為元/米.

(1)若米,則檢票等候區(qū)域(其中陰影部分)面積為多少平方米?

(2)試確定點(diǎn)的位置,使得修建費(fèi)用最低.

【答案】(1);(2)當(dāng)時(shí),修建費(fèi)用最低.

【解析】試題分析:

1設(shè)直線矩形交于兩點(diǎn),則陰影部分的面積為矩形的面積減去梯形和扇形與扇形的面積.(2)設(shè),則,從而可得修建費(fèi)用,利用導(dǎo)數(shù)求解,可得當(dāng)時(shí),即 有最小值,即修建費(fèi)用最低.

試題解析

(1)如圖,設(shè)直線矩形交于兩點(diǎn),連,則米, 米.

梯形的面積為平方米,

矩形的面積為平方米,

,得扇形和扇形的面積均為平方米,

故陰影部分面積為平方米

2)設(shè),則,

所以,

修建費(fèi)用

所以,

,得,

當(dāng)變化時(shí), 的變化情況如下表:

0

極小值

由上表可得當(dāng)時(shí),即, 有極小值,也為最小值.

故當(dāng)時(shí),修建費(fèi)用最低

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , , 平面, ,

(1)求證: 平面

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為梯形, , ,平面 平面, .

(1)求證: ;

(2)是否存在點(diǎn),到四棱錐各頂點(diǎn)的距離都相等?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)圓上的點(diǎn)作圓的切線,過(guò)點(diǎn)作切線的垂線若直線過(guò)拋物線的焦點(diǎn).

(1)求直線與拋物線的方程;

2若直線與拋物線交于點(diǎn)點(diǎn)在拋物線的準(zhǔn)線上,的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的極值;

(2)若不等式對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把正整數(shù)按下表排列:

(1)200在表中的位置(在第幾行第幾列);

(2)求表中主對(duì)角線上的數(shù)列:1、3、7、13、21、…的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省高中男生身高統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全省名男生的身高服從正態(tài)分布,現(xiàn)從該生某校高三年級(jí)男生中隨機(jī)抽取名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于之間,將測(cè)量結(jié)果按如下方式分成組:第一組,第二組,…,第六組,下圖是按照上述分組方法得到的頻率分布直方圖.

(1)求該學(xué)校高三年級(jí)男生的平均身高;

(2)求這名男生中身高在以上(含)的人數(shù);

(3)從這名男生中身高在以上(含)的人中任意抽取人,該中身高排名(從高到低)在全省前名的人數(shù)記為,求的數(shù)學(xué)期望.

(附:參考數(shù)據(jù):若服從正態(tài)分布,則, , .)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;

(Ⅱ)已知直線與曲線交于 兩點(diǎn),與軸交于點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為, , 分別為橢圓的上頂點(diǎn)和右焦點(diǎn), 的面積為,直線與橢圓交于另一個(gè)點(diǎn),線段的中點(diǎn)為.

(1)求直線的斜率;

(2)設(shè)平行于的直線與橢圓交于不同的兩點(diǎn), ,且與直線交于點(diǎn),求證:存在常數(shù),使得.

查看答案和解析>>

同步練習(xí)冊(cè)答案