【題目】△ABC,a,b,c分別為內(nèi)角A,B,C的對邊,2sin Acos C=2sin B-sin C.

(1)A的大小;

(2)在銳角三角形ABC, ,c+b的取值范圍.

【答案】(1) A= (2) (,2]

【解析】試題分析:(1) 2sin Acos C=2sin B-sin C.根據(jù)內(nèi)角和 可把sinB換成sinA+C)展開即得2cos Asin C=sin C,消去sinC,即得cos A=,從而得A.(2)根據(jù)第一問得出的A=,由正弦定理得出,所以c+b=2sin C+2sin B=2sin B+2sin=2sin,由銳角三角形得出,即得解.

試題解析:

(1) B=π-(A+C),2sin Acos C=2sin B-sin C=2sin Acos C+2cos Asin C-sin C, 2cos Asin C=sin C. sin C≠0, cos A= .

A(0,π),可得A= .

(2) 在銳角三角形ABC, (1)可得A=,B+C=

由正弦定理可得: ,c+b=2sin C+2sin B=2sin B+2sin =3sin B+cos B=2sin . ,可得 sin 可得b+c=2sin(,2].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的方程為:x2+y2﹣2x﹣4y+m=0.
(1)求m的取值范圍;
(2)若圓C與直線3x+4y﹣6=0交于M、N兩點,且|MN|=2 ,求m的值;
(3)設(shè)直線x﹣y﹣1=0與圓C交于A、B兩點,是否存在實數(shù)m,使得以AB為直徑的圓過原點,若存在,求出實數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知點的直角坐標(biāo)為,若直線的極坐標(biāo)方程為曲線的參數(shù)方程是為參數(shù)).

(1)求直線和曲線的普通方程;

(2)設(shè)直線和曲線交于兩點,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過拋物線C的焦點,且與C的對稱軸垂直.l與C交于A,B兩點,|AB|=12,P為C的準(zhǔn)線上一點,則△ABP的面積為(
A.18
B.24
C.36
D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(1)求不等式的解集;

(2)證明對于任意的, ,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點為極點O,軸正半軸為極軸,已知點P的直角坐標(biāo)為(1,-5),C的極坐標(biāo)為,若直線l經(jīng)過點P,且傾斜角為,圓C的半徑為4.

(1).求直線l的參數(shù)方程及圓C的極坐標(biāo)方程;

(2).試判斷直線l與圓C有位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點為極點O,軸正半軸為極軸,已知點P的直角坐標(biāo)為(1,-5),C的極坐標(biāo)為,若直線l經(jīng)過點P,且傾斜角為,圓C的半徑為4.

(1).求直線l的參數(shù)方程及圓C的極坐標(biāo)方程;

(2).試判斷直線l與圓C有位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=ex﹣alnx(其中a∈R,e為自然常數(shù))
a∈R,使得直線y=ex為函數(shù)f(x)的一條切線;
②對a<0,函數(shù)f(x)的導(dǎo)函數(shù)f′(x)無零點;
③對a<0,函數(shù)f(x)總存在零點;
則上述結(jié)論正確的是 . (寫出所有正確的結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx﹣a+2
(1)若關(guān)于x的不等式f(x)>0的解集是(﹣1,3),求實數(shù)a,b的值;
(2)若b=2,a>0,解關(guān)于x的不等式f(x)>0.

查看答案和解析>>

同步練習(xí)冊答案