【題目】經(jīng)銷商銷售某種產(chǎn)品,在一個銷售季度內(nèi),每售出該產(chǎn)品獲利潤元;未售出的產(chǎn)品,每虧損元.根據(jù)以往的銷售記錄,得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個銷售季度購進了該產(chǎn)品.用(單位:,)表示下一個銷售季度內(nèi)的市場需求量,(單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該產(chǎn)品的利潤.

(1)將表示為的函數(shù);

(2)根據(jù)直方圖估計利潤不少于元的概率.

【答案】(1)(2)0.9

【解析】

1)由題意先分段寫出,當時,當時,和利潤值,最后利用分段函數(shù)的形式進行綜合即可;

2)利用(1)求出利潤不少于32000元時,再利用頻率分布直方圖求得的頻率為,利用樣本估計總體的方法得出利潤y不少于32000的概率估計值.

(1)

(2)由(1)知利潤不少于元相當于,

由直方圖可知需求量在之間的頻率為

所以下一個銷售季度經(jīng)銷利潤不少于元的概率估計值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)excos xx.

(1)求曲線yf(x)在點(0,f(0))處的切線方程;

(2)求函數(shù)f(x)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一張矩形白紙ABCD,AB=10,AD=,E,F分別為AD,BC的中點,現(xiàn)分別將△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同側(cè),下列命題正確的是____________(寫出所有正確命題的序號)

①當平面ABE∥平面CDF時,AC∥平面BFDE

②當平面ABE∥平面CDF時,AE∥CD

③當A、C重合于點P時,PG⊥PD

④當A、C重合于點P時,三棱錐P-DEF的外接球的表面積為150

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃在辦公大廳建一面長為米的玻璃幕墻.先等距安裝根立柱,然后在相鄰的立柱之間安裝一塊與立柱等高的同種規(guī)格的玻璃.一根立柱的造價為6400元,一塊長為米的玻璃造價為元.假設(shè)所有立柱的粗細都忽略不計,且不考慮其他因素,記總造價為元(總造價=立柱造價+玻璃造價).

(1)求關(guān)于的函數(shù)關(guān)系式;

(2)當時,怎樣設(shè)計能使總造價最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求定義域,并判斷函數(shù)fx)的奇偶性;

2)若f1+f2=0,證明函數(shù)fx)在(0+∞)上的單調(diào)性,并求函數(shù)fx)在區(qū)間[1,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù),),為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為

(Ⅰ)求直線的普通方程和曲線的直角坐標方程;

(Ⅱ)設(shè),直線交曲線兩點,是直線上的點,且,當最大時,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=x2+bx+c,其中b,cR

1)當fx)的圖象關(guān)于直線x=1對稱時,b=______;

2)如果fx)在區(qū)間[-11]不是單調(diào)函數(shù),證明:對任意xR,都有fx)>c-1;

3)如果fx)在區(qū)間(0,1)上有兩個不同的零點.求c2+1+bc的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=x2-2ax+5

1)若fx)的定義域和值域均是[1a],求實數(shù)a的值;

2)若a≤1,求函數(shù)y=|fx|[01]上的最大值.

查看答案和解析>>

同步練習冊答案