【題目】在銳角△ABC中,分別為A、B、C所對的邊,且
(1)確定角C的大小;
(2)若c=,求△ABC周長的取值范圍.
【答案】(1)C=60°;(2)(+3,].
【解析】
(1)利用正弦定理化簡已知條件,求得的值,根據(jù)三角形是銳角三角形求得的大小.(2)利用正弦定理將轉化為角度來表示,求得三角形周長的表達式,利用三角函數(shù)求取值范圍的方法,求得三角形周長的取值范圍.
解:(1)已知a、b、c分別為A、B、C所對的邊,
由a=2csinA,
得sinA=2sinCsinA,又sinA≠0,則sinC=,
∴C=60°或C=120°,
∵△ABC為銳角三角形,∴C=120°舍去!C=60°
(2)∵c=,sinC=
∴由正弦定理得:,
即a=2sinA,b=2sinB,又A+B=π-C=,
即B=-A
∴a+b+c=2(sinA+sinB)+=2 [sinA+sin(-A)]+
=2(sinA+sincosA-cossinA)+
=2(sinAcos+cosAsin)+=2sin(A+)+,
∵△ABC是銳角三角形,
∴<A<,
∴<sin(A+)≤1,
則△ABC周長的取值范圍是(+3,].
科目:高中數(shù)學 來源: 題型:
【題目】為了了解學生的學習情況,一次測試中,科任老師從本班中抽取了n個學生的成績(滿分100分,且抽取的學生成績均在內(nèi))進行統(tǒng)計分析.按照,,,,,的分組作出頻率分布直方圖和頻數(shù)分布表.
頻數(shù)分布表 | |
x | |
4 | |
10 | |
12 | |
8 | |
4 |
(1)求n,a,x的值;
(2)在選取的樣本中,從低于60分的學生中隨機抽取兩名學生,試問這兩名學生在同一組的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以軸為始邊做兩個銳角,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標分別為
(1)求的值; (2)求的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,判斷在上的單調(diào)性并證明;
(2)若對任意,不等式恒成立,求的取值范圍;
(3)討論函數(shù)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)2008年至2016年糧食產(chǎn)量的部分數(shù)據(jù)如下表:
(1)求該地區(qū)2008年至2016年的糧食年產(chǎn)量與年份之間的線性回歸方程;
(2)利用(1)中的回歸方程,分析2008年至2016年該地區(qū)糧食產(chǎn)量的變化情況,并預測該地區(qū) 2018年的糧食產(chǎn)量.
附:回歸直線的斜率和截距的最小二乘估計公式分別為,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,
(1)當時,求的最大值和最小值;
(2)求實數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在是增函數(shù),其圖像如圖所示.
(1)已知,,利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;
(2)對于(1)中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com