【題目】某村計劃建造一個室內(nèi)面積為800平米的矩形蔬菜溫室,在溫室內(nèi)沿左右兩側與后墻內(nèi)側各保留1米的通道,沿前側內(nèi)墻保留3米寬的空地,當矩形溫室的邊長各為多少時,蔬菜的種植面積最大?最大的種植面積是多少?

【答案】當矩形溫室的左側邊長為40m,后側邊長為20m時,花卉種植面積達到最大,最大面積為648

【解析】

解:設溫室的邊長分別為:xy

則:………………………………………………………………………………1分)

,………………………………………………………3分)

……………………………………………………………………4分)

≥2

當且僅當時,等號成立

≤648…………………………………………………………………………………6分)

此時,最大的種植面積為:648m2………………………………………………8

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)=sin(x+ )圖象上各點的橫坐標縮短到原來的 倍(縱坐標不變),再把得到的圖象向右平移 個單位,得到的新圖象的函數(shù)解析式為g(x)= , g(x)的單調(diào)遞減區(qū)間是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點F,C上一點到焦點的距離為5.

(1)求C的方程;

(2)過F作直線l,交CA,B兩點,若直線AB中點的縱坐標為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)是定義在(﹣44)上的奇函數(shù),滿足f2)=1,當﹣4x≤0時,有fx)=

1)求實數(shù)ab的值;

2)若fm+1+>0.求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】P={ },Q={ } ,

(1);

(2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣mx(m∈R).
(1)若曲線y=f(x)過點P(1,﹣1),求曲線y=f(x)在點P處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[1,e]上的最大值;
(3)若函數(shù)f(x)有兩個不同的零點x1 , x2 , 求證:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,半徑為1的半圓O與等邊三角形ABC夾在兩平行線l1 , l2之間,l∥l1 , l與半圓相交于F,G兩點,與三角形ABC兩邊相交于E,D兩點.設弧 的長為x(0<x<π),y=EB+BC+CD,若l從l1平行移動到l2 , 則函數(shù)y=f(x)的圖象大致是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行下面的程序框圖,如果輸入的,則輸出的( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(xy)=f(xf(y),且f(1)=.

(1)nN,求f(n)的表達式;

(2)annf(n),nN,求證:a1a2+…+an<2.

【答案】(1)(2)見解析

【解析】

(1)利用f(x+y)=f(x)f(y)(x,yR)通過令x=n,y=1,說明{f(n)}是以f(1)=為首項,公比為的等比數(shù)列求出;(2)利用(1)求出an=nf(n)的表達式,利用錯位相減法求出數(shù)列的前n項和,即可說明不等式成立.

(1)解:f(n)=f[(n-1)+1]

f(n-1)·f(1)=f(n-1).

∴當n≥2時,.

f(1)=

∴數(shù)列{f(n)}是首項為,公比為的等比數(shù)列,

f(n)=f(1)·()n1=()n.

(2)證明(1)可知

ann·()nn·,

Sna1a2+…+an

Sn+2×+3×+…+(n-1)·n·,

Sn+2×+…+(n-2)·+(n-1)·n·.

②得,

Sn+…+n·

=1-,

Sn=2-<2.

a1a2+…+an<2.

【點睛】

本題考查數(shù)列與函數(shù)的關系,數(shù)列通項公式的求法和的求法,考查不等式的證明,裂項法與錯位相減法的應用,數(shù)列通項的求法中有常見的已知的關系,求表達式,一般是寫出做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數(shù)列求和常用法有:錯位相減,裂項求和,分組求和等.

型】解答
束】
22

【題目】設數(shù)列{an}的前n項和為Sn.已知a1a (a≠3),an1Sn+3n,nN.

(1)bnSn-3n,求數(shù)列{bn}的通項公式;

(2)an1an,nN,求a的取值范圍.

查看答案和解析>>

同步練習冊答案