【題目】方程2x=2﹣x的根所在區(qū)間是(
    A.(﹣1,0)
    B.(2,3)
    C.(1,2)
    D.(0,1)

    【答案】D
    【解析】解:令f(x)=2x+x﹣2,則f(0)=1﹣2=﹣1<0,f(1)=2+1﹣2=1>0,∴f(0)f(1)<0,
    ∴函數(shù)f(x)在區(qū)間(0,1)上必有零點,①
    又∵2x>0,ln2>0,∴f′(x)=2xln2+1>0,∴函數(shù)f(x)在R上單調(diào)遞增,至多有一個零點.②
    綜上①②可知:函數(shù)f(x)=2x+x﹣2在R有且只有一個零點x0 , 且x0∈(0,1).
    即方程2x=2﹣x的根所在區(qū)間是(0,1).
    故選D.
    【考點精析】關(guān)于本題考查的函數(shù)的零點,需要了解函數(shù)的零點就是方程的實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo).即:方程有實數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點,函數(shù)有零點才能得出正確答案.

    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    【題目】已知復(fù)數(shù)z1滿足(z1-2)(1+i)=1-i(i為虛數(shù)單位),復(fù)數(shù)z2的虛部為2,且z1·z2是實數(shù),則z2=( )
    A.4-2i
    B.4+2i
    C.2+4i
    D.2-4i

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    【題目】在(1﹣2x)7(1+x)的展開式中,含x2項的系數(shù)為(
    A.71
    B.70
    C.21
    D.49

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    【題目】定義在R上的函數(shù)y=f(x)滿足f(x)=f(2﹣x),f'(x)(x﹣1)>0,則對任意的x1<x2 , f(x1)>f(x2)是x1+x2<2的(
    A.充分不必要條件
    B.充要條件
    C.必要不充分條件
    D.既不充分也不必要條件

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    【題目】已知命題p:x∈R,x2+2ax+a≤0.若命題p是假命題,則實數(shù)a的取值范圍是

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    【題目】下列說法正確的是(
    A.a>bac2>bc2
    B.a>ba2>b2
    C.a>ba3>b3
    D.a2>b2a>b

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    【題目】已知函數(shù)f(x)的定義域為R,M為常數(shù).若p:對x∈R,都有f(x)≥M;q:M是函數(shù)f(x)的最小
    值,則p是q的(
    A.充分不必要條件
    B.必要不充分條件
    C.充要條件
    D.既不充分也不必要條件

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    【題目】已知函數(shù)f(x+1)=2x2+5x+2,則f(x)的解析式為(
    A.f(x)=2x2+5x+2
    B.f(x)=2x2+x﹣1
    C.f(x)=2x2+9x+11
    D.f(x)=2x2+5x﹣2

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    【題目】甲、乙兩人射擊,中靶的概率分別為0.8,0.9,若兩人同時獨立射擊,他們都擊中靶的概率為

    查看答案和解析>>

    同步練習(xí)冊答案