【題目】某地建一座橋,兩端的橋墩已建好,這兩墩相距m米,余下工程只需建兩端橋墩之間的橋面和橋墩.經(jīng)測(cè)算,一個(gè)橋墩的工程費(fèi)用為256萬(wàn)元;距離為x米的相鄰兩墩之間的橋面工程費(fèi)用為(2+)x萬(wàn)元.假設(shè)橋墩等距離分布,所有橋墩都視為點(diǎn),且不考慮其他因素,記余下工程的費(fèi)用為y萬(wàn)元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)m=640米時(shí),需新建多少個(gè)橋墩才能使y最?
【答案】(1);(2).
【解析】
(1)設(shè)需要新建n個(gè)橋墩,
則,---------------------------------------------------4分
所以
(x>0)------------------------------7分
(2)
令,即-----------------------------------------------10分
當(dāng)0<x<64時(shí),,在區(qū)間(0,64)上為減函數(shù),
當(dāng)64<x<640時(shí),,在區(qū)間(64,640)上為增函數(shù),
所以當(dāng)x=64時(shí)y最小,這時(shí)--------------------------15分
答:當(dāng)m=640米時(shí),需新建9個(gè)橋墩才能使y最。----------------16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)某水文觀測(cè)點(diǎn)的歷史統(tǒng)計(jì)數(shù)據(jù),得到某河流水位(單位:米)的頻率分布直方圖如下:將河流水位在以上6段的頻率作為相應(yīng)段的概率,并假設(shè)每年河流水位互不影響.
(Ⅰ)求未來(lái)三年,至多有1年河流水位的概率(結(jié)果用分?jǐn)?shù)表示);
(Ⅱ)該河流對(duì)沿河企業(yè)影響如下:當(dāng)時(shí),不會(huì)造成影響;當(dāng)時(shí),損失10000元;當(dāng)時(shí),損失60000元,為減少損失,現(xiàn)有三種應(yīng)對(duì)方案:
方案一:防御35米的最高水位,需要工程費(fèi)用3800元;
方案二:防御不超過(guò)31米的水位,需要工程費(fèi)用2000元;
方案三:不采用措施:試比較哪種方案較好,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知射手甲射擊一次,命中9環(huán)(含9環(huán))以上的概率為0.56,命中8環(huán)的概率為0.22,命中7環(huán)的概率為0.12.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)求甲射擊一次,命中不足8環(huán)的概率;
(2)求甲射擊一次,至少命中7環(huán)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, , .
(1)若是的充分不必要條件,求實(shí)數(shù)的取值范圍;
(2)若,“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的圖像在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),函數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
如圖,在四棱錐P—ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求異面直線PB與CD所成角的余弦值;
(Ⅲ)求點(diǎn)A到平面PCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù),.
(Ⅰ)求的單調(diào)區(qū)間和極值;
(Ⅱ)證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,填寫在相應(yīng)位置,并求出函數(shù)的解析式;
(2)把的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com