【題目】已知函數(shù).
(Ⅰ)若過(guò)點(diǎn)恰有兩條直線與曲線相切,求的值;
(Ⅱ)用表示中的最小值,設(shè)函數(shù),若恰有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ);(Ⅱ).
【解析】試題分析:(Ⅰ)求導(dǎo),利用導(dǎo)數(shù)求得 的過(guò)點(diǎn)的切線方程,構(gòu)造輔助函數(shù),利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,分類討論即可得a的值;
(Ⅱ)根據(jù)函數(shù)的定義求,根據(jù)函數(shù)的單調(diào)性及零點(diǎn)的判斷,采用分類討論法,求得函數(shù)零點(diǎn)的個(gè)數(shù),即可求得恰有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
試題解析:(Ⅰ)∵,∴,
設(shè)切點(diǎn)為,則該點(diǎn)處的切線方程為,
又∵切線過(guò)點(diǎn),∴,
整理得, ,(*)
依題設(shè),方程(*)恰有兩個(gè)不同的解,
令,則,
解得,
①當(dāng)時(shí), 恒成立, 單調(diào)遞增,至多只有一個(gè)零點(diǎn),不合題設(shè);
②當(dāng)時(shí),則為的極值點(diǎn),若恰有兩個(gè)不同的解,
則或,又∵,
,∴或.
令,則,
解得,∴在上單調(diào)遞增,在上單調(diào)遞減,
又∵, ∴當(dāng)且時(shí), 無(wú)解. ∴.
(Ⅱ)∵,
∴當(dāng)時(shí),解得.
由(Ⅰ)知, ,
當(dāng)時(shí), ;當(dāng)或時(shí), ,
∴在上單調(diào)遞增,在上單調(diào)遞減.
∴當(dāng)時(shí), ,當(dāng)時(shí), .
∵, ∴,
∴當(dāng)時(shí), , 在上單調(diào)遞減,
∵,∴.
∴當(dāng)時(shí), ,當(dāng)時(shí), ,
此時(shí)恰有三個(gè)零點(diǎn).
當(dāng)時(shí), ,解得,
∴在上單調(diào)遞減,在上單調(diào)遞增,
∴,當(dāng)時(shí), ,此時(shí)不合題意;
當(dāng)時(shí), 恰有一個(gè)零點(diǎn),此時(shí)符合題意;
當(dāng)時(shí), , ,
又∵,當(dāng)時(shí), .
∴在上有兩個(gè)零點(diǎn),此時(shí)在上有4個(gè)零點(diǎn),不合題設(shè).
綜上, 的取值范圍是.
點(diǎn)晴:本題考查函數(shù)導(dǎo)數(shù)與單調(diào)性.確定零點(diǎn)的個(gè)數(shù)問(wèn)題:可利用數(shù)形結(jié)合的辦法判斷交點(diǎn)個(gè)數(shù),如果函數(shù)較為復(fù)雜,可結(jié)合導(dǎo)數(shù)知識(shí)確定極值點(diǎn)和單調(diào)區(qū)間從而確定其大致圖象.方程的有解問(wèn)題就是判斷是否存在零點(diǎn)的問(wèn)題,可參變分離,轉(zhuǎn)化為求函數(shù)的值域問(wèn)題處理. 恒成立問(wèn)題以及可轉(zhuǎn)化為恒成立問(wèn)題的問(wèn)題,往往可利用參變分離的方法,轉(zhuǎn)化為求函數(shù)最值處理.也可構(gòu)造新函數(shù)然后利用導(dǎo)數(shù)來(lái)求解.注意利用數(shù)形結(jié)合的數(shù)學(xué)思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn),且,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)求函數(shù)的圖象在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),求證:;
(3)若對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩種不同規(guī)格的產(chǎn)品,其質(zhì)量按測(cè)試指標(biāo)分?jǐn)?shù)進(jìn)行劃分,其中分?jǐn)?shù)不小于82分的為合格品,否則為次品.現(xiàn)隨機(jī)抽取兩種產(chǎn)品各100件進(jìn)行檢測(cè),其結(jié)果如下:
測(cè)試指標(biāo)分?jǐn)?shù) | |||||
甲產(chǎn)品 | 8 | 12 | 40 | 32 | 8 |
乙產(chǎn)品 | 7 | 18 | 40 | 29 | 6 |
(1)根據(jù)以上數(shù)據(jù),完成下面的 列聯(lián)表,并判斷是否有 的有把握認(rèn)為兩種產(chǎn)品的質(zhì)量有明顯差異?
甲產(chǎn)品 | 乙產(chǎn)品 | 合計(jì) | |
合格品 | |||
次品 | |||
合計(jì) |
(2)已知生產(chǎn)1件甲產(chǎn)品,若為合格品,則可盈利40元,若為次品,則虧損5元;生產(chǎn)1件乙產(chǎn)品,若為合格品,則可盈利50元,若為次品,則虧損10元.記 為生產(chǎn)1件甲產(chǎn)品和1件乙產(chǎn)品所得的總利潤(rùn),求隨機(jī)變量的分布列和數(shù)學(xué)期望(將產(chǎn)品的合格率作為抽檢一件這種產(chǎn)品為合格品的概率).
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.702 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,兩焦點(diǎn)分別為,右頂點(diǎn)為, .
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過(guò)定點(diǎn)的直線與雙曲線的左支有兩個(gè)交點(diǎn),與橢圓交于兩點(diǎn),與圓交于兩點(diǎn),若的面積為, ,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集U=R,集合A={x|x<﹣4,或x>2},B={x|﹣1≤2x﹣1﹣2≤6}.
(1)求A∩B、(UA)∪(UB);
(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種商品價(jià)格與該商品日需求量之間的幾組對(duì)照數(shù)據(jù)如下表:
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,當(dāng)價(jià)格元時(shí),日需求量的預(yù)測(cè)值為多少?
參考公式:線性歸回方程: ,其中 ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位共有10名員工,他們某年的收入如下表:
員工編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(萬(wàn)元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
(1)求該單位員工當(dāng)年年薪的平均值和中位數(shù);
(2)從該單位中任取2人,此2人中年薪收入高于7萬(wàn)的人數(shù)記為,求的分布列和期望;
(3)已知員工年薪收入與工作年限成正相關(guān)關(guān)系,某員工工作第一年至第四年的年薪分別為4萬(wàn)元,5.5萬(wàn)元,6萬(wàn)元,8.5萬(wàn)元,預(yù)測(cè)該員工第五年的年薪為多少?
附:線性回歸方程中系數(shù)計(jì)算公式分別為:
, ,其中為樣本均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集U=R,集合A={x|2x+a>0},B={x|x2﹣2x﹣3>0}. (Ⅰ)當(dāng)a=2時(shí),求集合A∩B;
(Ⅱ)若A∩(UB)=,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com