【題目】已知a,b,c分別是△ABC的角A,B,C所對的邊,且c=2,C= .
(1)若△ABC的面積等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求A的值.
【答案】
(1)解:∵c=2,C= ,由余弦定理可得:c2=a2+b2﹣2abcosC,
∴4=a2+b2﹣ab,
∵ = ,化為ab=4.
聯(lián)立 ,解得a=2,b=2.
(2)解:∵sinC=sin(B+A),sinC+sin(B﹣A)=2sin2A,
∴sin(A+B)+sin(B﹣A)=2sin2A,
2sinBcosA=4sinAcosA,
當cosA=0時,解得A= ;
當cosA≠0時,sinB=2sinA,
由正弦定理可得:b=2a,
聯(lián)立 ,解得 ,b= ,
∴b2=a2+c2,
∴ ,
又 ,∴ .
綜上可得:A= 或 .
【解析】(1)c=2,C= ,由余弦定理可得:c2=a2+b2﹣2abcosC,即4=a2+b2﹣ab,利用三角形面積計算公式 = ,即ab=4.聯(lián)立解出即可.(2)由sinC=sin(B+A),sinC+sin(B﹣A)=2sin2A,可得2sinBcosA=4sinAcosA.當cosA=0時,解得A= ;當cosA≠0時,sinB=2sinA,由正弦定理可得:b=2a,聯(lián)立解得即可.
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列{an}滿足a3=5,a10=﹣9.
(Ⅰ)求{an}的通項公式;
(Ⅱ)求{an}的前n項和Sn及使得Sn最大的序號n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在長方體ABCD﹣A1B1C1D1中,B1 C和C1D與底面A1B1C1D1所成的角分別為60°和45°,則異面直線B1C和C1D所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4一4:坐標系與參數(shù)方程
已知曲線的參數(shù)方程是 (為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.
(1)寫出的極坐標方程和的直角坐標方程;
(2)已知點的極坐標分別為和,直線與曲線相交于兩點,射線
與曲線相交于點,射線與曲線相交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若為的極值點,求實數(shù)的值;
(2)若在上為增函數(shù),求實數(shù)的取值范圍;
(2)若使方程有實根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列{an}滿足 =1,公差d∈(﹣1,0),當且僅當n=9時,數(shù)列{an}的前n項和Sn取得最大值,求該數(shù)列首項a1的取值范圍( )
A.( , )
B.[ , ]
C.( , )
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出以下問題:
①求面積為1的正三角形的周長;
②求鍵盤所輸入的三個數(shù)的算術平均數(shù);
③求鍵盤所輸入的兩個數(shù)的最小數(shù);
④求函數(shù)當自變量取時的函數(shù)值.
其中不需要用條件語句來描述算法的問題有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中, 為坐標原點,曲線: (為參數(shù)),在以平面直角坐標系的原點為極點, 軸的正半軸為極軸,有相同單位長度的極坐標系中,直線: .
(Ⅰ)求曲線的普通方程和直線的直角坐標方程;
(Ⅱ)求與直線平行且與曲線相切的直線的直角坐標方程。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com