【題目】在△ABC中,a、b、c分別為角ABC所對(duì)的邊,且 acosC=csinA.
(1)求角C的大。
(2)若c=2 ,且△ABC的面積為6 ,求a+b的值.

【答案】
(1)解:由csinA= acosC,結(jié)合正弦定理得, ,

∴sinC= cosC,即tanC= ,

∵0<C<π,

∴C=


(2)解:∵C= ,c=2 ,

∴由余弦定理可得:28=a2+b2﹣ab=(a+b)2﹣3ab,

∵△ABC的面積為6 = absinC= ab,

解得:ab=24,

∴28=(a+b)2﹣3ab=(a+b)2﹣72,解得a+b=10


【解析】(1)已知等式變形后利用正弦定理化簡(jiǎn),整理后再利用同角三角函數(shù)間的基本關(guān)系求出tanC的值,由C為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出C的度數(shù);(2)由余弦定理可得:28=(a+b)2﹣3ab,由三角形面積公式可解得:ab=24,進(jìn)而解得a+b的值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解正弦定理的定義(正弦定理:).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=axln(x+1)+x+1(x>﹣1,a∈R).
(1)若 ,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x≥0時(shí),不等式f(x)≤ex恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足an=3an1+3n﹣1(n∈N* , n≥2), 已知a3=95.
(1)求a1 , a2;
(2)是否存在一個(gè)實(shí)數(shù)t,使得 ,且{bn}為等差數(shù)列?若存在,則求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)的定義在(0,3)上的函數(shù),f(x)的圖象如圖所示,那么不等式f(x)cosx<0的解集是(
A.(0,1)∪(2,3)
B.
C.
D.(0,1)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C: ,(θ為參數(shù)),在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程2ρcosθ+ρsinθ﹣6=0.
(1)寫出曲線C的普通方程,直線l的直角坐標(biāo)方程;
(2)過曲線C上任意一點(diǎn)P作與l夾角為30°的直線,交l于點(diǎn)A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中.圓C的參數(shù)方程為 (α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,點(diǎn)D的極坐標(biāo)為(ρ1 , π).
(1)求圓C的極坐標(biāo)方程;
(2)過點(diǎn)D作圓C的切線,切點(diǎn)分別為A,B,且∠ADB=60°,求ρ1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,已知3asinC=ccosA.
(Ⅰ)求sinA的值;
(Ⅱ)若B= ,△ABC的面積為9,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+3x對(duì)任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,則x∈

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=xex(e為自然對(duì)數(shù)的底數(shù)),g(x)=(x+1)2
(Ⅰ)記 ,討論函數(shù)F(x)的單調(diào)性;
(Ⅱ)令G(x)=af(x)+g(x)(a∈R),若函數(shù)G(x)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案