【題目】已知橢圓經(jīng)過點,且離心率為,過其右焦點F的直線交橢圓C于M,N兩點,交y軸于E點.若,.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)試判斷是否是定值.若是定值,求出該定值;若不是定值,請說明理由.
【答案】(Ⅰ);(Ⅱ)為定值,為.
【解析】
(Ⅰ)根據(jù)題意列方程組,解得,,則可得到橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)直線的方程為,聯(lián)立消去y可得.設(shè),,根據(jù)韋達(dá)定理和已知條件,可得,,再相加根據(jù)韋達(dá)定理,變形可得定值.
(1)設(shè)橢圓的半焦距為,由題意可得,
解得,,.
所以橢圓的標(biāo)準(zhǔn)方程為.
(Ⅱ)為定值.
由題意可知,直線的斜率存在,設(shè)直線的斜率為k,
因為直線過點,所以直線的方程為.
令,可得,即.
聯(lián)立消去y可得.
設(shè),,易知,,則,.
,,,.
由,,可得,
所以.
將,代入上式,化簡可得
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)已知c>0,關(guān)于x的不等式:x+|x-2c|≥2的解集為R.求實數(shù)c的取值范圍;
(Ⅱ)若c的最小值為m,又p、q、r是正實數(shù),且滿足p+q+r=3m,求證:p2+q2+r2≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓:的左焦點為且離心率為,為橢圓上任意一點,的取值范圍為,.
(1)求橢圓的方程;
(2)如圖,設(shè)圓是圓心在橢圓上且半徑為的動圓,過原點作圓的兩條切線,分別交橢圓于,兩點.是否存在使得直線與直線的斜率之積為定值?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解高二年級學(xué)生某次數(shù)學(xué)考試成績的分布情況,從該年級的1120名學(xué)生中隨機抽取了100名學(xué)生的數(shù)學(xué)成績,發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學(xué)生的成績按照,,,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是
A. 頻率分布直方圖中a的值為
B. 樣本數(shù)據(jù)低于130分的頻率為
C. 總體的中位數(shù)保留1位小數(shù)估計為分
D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、為拋物線上的兩點,與的中點的縱坐標(biāo)為4,直線的斜率為.
(1)求拋物線的方程;
(2)已知點,、為拋物線(除原點外)上的不同兩點,直線、的斜率分別為,,且滿足,記拋物線在、處的切線交于點,線段的中點為,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點的坐標(biāo)分別為,.三角形的兩條邊,所在直線的斜率之積是.
(1)求點的軌跡方程;
(2)設(shè)直線方程為,直線方程為,直線交于,點,關(guān)于軸對稱,直線與軸相交于點.若的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距與短軸長相等,長軸長為,設(shè)過右焦點F傾斜角為的直線交橢圓M于A、B兩點.
(1)求橢圓M的方程;
(2)求證:
(3)設(shè)過右焦點F且與直線AB垂直的直線交橢圓M于C、D,求四邊形ABCD面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com