【題目】已知圓C:(x﹣1)2+y2=r2(r>0)與直線l:y=x+3,且直線l有唯一的一個(gè)點(diǎn)P,使得過P點(diǎn)作圓C的兩條切線互相垂直,則r=;設(shè)EF是直線l上的一條線段,若對(duì)于圓C上的任意一點(diǎn)Q,∠EQF≥ ,則|EF|的最小值= .
【答案】2;4 +4
【解析】解:①∵圓心為C(1,0),半徑為r;
設(shè)兩個(gè)切點(diǎn)分別為A、B,則由題意可得四邊形PACB為正方形,
∴PC= r,
∴圓心C到直線y=x+3的距離等于PC= r,
即 = r,
解得r=2;
②由題意,圓心C(1,0)到直線l:y=x+3的距離為2 >2(半徑),
所以直線l和圓相離;
從圓上任一點(diǎn)Q向直線上的兩點(diǎn)連線成角,當(dāng)且僅當(dāng)點(diǎn)Q在如圖所示的位置時(shí),∠EQF最小,
又∠EQF≥ ,得∠EQP≥ ;
∴PE≥PQ=PC+CQ=2 +2,
∴EF≥2PQ=4 +4;
即|EF|的最小值為4 +4.
所以答案是:2;4 +4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:f(x)=ex+lnx+2x2+mx+1在(0,+∞)上單調(diào)遞增,q:m≥﹣5,則p是q的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表.
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
總計(jì) | 105 |
已知在全部105人中隨機(jī)抽取1人為優(yōu)秀的概率為.
(1)請(qǐng)完成上面的列聯(lián)表;(把列聯(lián)表自己畫到答題卡上)
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”?
參考公式:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣1)2+y2=r2(r>0)與直線l:y=x+3,且直線l有唯一的一個(gè)點(diǎn)P,使得過P點(diǎn)作圓C的兩條切線互相垂直,則r=;設(shè)EF是直線l上的一條線段,若對(duì)于圓C上的任意一點(diǎn)Q,∠EQF≥ ,則|EF|的最小值= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2﹣a|x﹣1|+b(a>0,b>﹣1)
(1)若b=0,a>2,求f(x)在區(qū)間[0,2]內(nèi)的最小值m(a);
(2)若f(x)在區(qū)間[0,2]內(nèi)不同的零點(diǎn)恰有兩個(gè),且落在區(qū)間[0,1),(1,2]內(nèi)各一個(gè),求a﹣b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且2acosB=3b﹣2bcosA.
(1)求 的值;
(2)設(shè)AB的中垂線交BC于D,若cos∠ADC= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問:米幾何?”如圖所示的是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的(單位:升),則輸入的值為( )
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐S—ABCD的底面是正方形,側(cè)棱SA⊥底面ABCD,
過A作AE垂直SB交SB于E點(diǎn),作AH垂直SD交SD于H點(diǎn),平面AEH交SC于K點(diǎn),且AB=1,SA=2.
(1)證明E、H在以AK為直徑的圓上,且當(dāng)點(diǎn)P是SA上任一點(diǎn)時(shí),試求的最小值;
(2)求平面AEKH與平面ABCD所成的銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com