【題目】設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對(duì)值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合.對(duì)于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n);記K(A)為|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表A,求K(A)的值;

1

1

﹣0.8

0.1

﹣0.3

﹣1


(2)設(shè)數(shù)表A∈S(2,3)形如

1

1

c

a

b

﹣1

求K(A)的最大值;
(3)給定正整數(shù)t,對(duì)于所有的A∈S(2,2t+1),求K(A)的最大值.

【答案】
(1)解:由題意可知r1(A)=1.2,r2(A)=﹣1.2,c1(A)=1.1,c2(A)=0.7,c3(A)=﹣1.8

∴K(A)=0.7


(2)解:先用反證法證明k(A)≤1:

若k(A)>1

則|c1(A)|=|a+1|=a+1>1,∴a>0

同理可知b>0,∴a+b>0

由題目所有數(shù)和為0

即a+b+c=﹣1

∴c=﹣1﹣a﹣b<﹣1

與題目條件矛盾

∴k(A)≤1.

易知當(dāng)a=b=0時(shí),k(A)=1存在

∴k(A)的最大值為1


(3)解:k(A)的最大值為

首先構(gòu)造滿足 的A={ai,j}(i=1,2,j=1,2,…,2t+1): ,

經(jīng)計(jì)算知,A中每個(gè)元素的絕對(duì)值都小于1,所有元素之和為0,且 , ,

下面證明 是最大值.若不然,則存在一個(gè)數(shù)表A∈S(2,2t+1),使得

由k(A)的定義知A的每一列兩個(gè)數(shù)之和的絕對(duì)值都不小于x,而兩個(gè)絕對(duì)值不超過1的數(shù)的和,其絕對(duì)值不超過2,故A的每一列兩個(gè)數(shù)之和的絕對(duì)值都在區(qū)間[x,2]中.由于x>1,故A的每一列兩個(gè)數(shù)符號(hào)均與列和的符號(hào)相同,且絕對(duì)值均不小于x﹣1.

設(shè)A中有g(shù)列的列和為正,有h列的列和為負(fù),由對(duì)稱性不妨設(shè)g<h,則g≤t,h≥t+1.另外,由對(duì)稱性不妨設(shè)A的第一行行和為正,第二行行和為負(fù).

考慮A的第一行,由前面結(jié)論知A的第一行有不超過t個(gè)正數(shù)和不少于t+1個(gè)負(fù)數(shù),每個(gè)正數(shù)的絕對(duì)值不超過1(即每個(gè)正數(shù)均不超過1),每個(gè)負(fù)數(shù)的絕對(duì)值不小于x﹣1(即每個(gè)負(fù)數(shù)均不超過1﹣x).因此|r1(A)|=r1(A)≤t1+(t+1)(1﹣x)=2t+1﹣(t+1)x=x+(2t+1﹣(t+2)x)<x,

故A的第一行行和的絕對(duì)值小于x,與假設(shè)矛盾.因此k(A)的最大值為


【解析】(1)根據(jù)ri(A),Cj(A),定義求出r1(A),r2(A),c1(A),c2(A),c3(A),再根據(jù)K(A)為|r1(A)|,|R2(A)|,|R3(A)|,|C1(A)|,|C2(A)|,|C3(A)|中的最小值,即可求出所求.(2)先用反證法證明k(A)≤1,然后證明k(A)=1存在即可;(3)首先構(gòu)造滿足 的A={ai , j}(i=1,2,j=1,2,…,2t+1),然后證明 是最大值即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信搶紅包”自2015年以來異;鸨,在某個(gè)微信群某次進(jìn)行的搶紅包活動(dòng)中,若所發(fā)紅包的總金額為8元,被隨機(jī)分配為1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于3元的概率是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】受轎車在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)產(chǎn)生每輛轎車的利潤與該轎車首次出現(xiàn)故障的時(shí)間有關(guān),某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年,現(xiàn)從該廠已售出的兩種品牌轎車中隨機(jī)抽取50輛,統(tǒng)計(jì)數(shù)據(jù)如下:

品牌

首次出現(xiàn)故障時(shí)間x(年)

0<x<1

1<x≤2

x>2

0<x≤2

x>2

轎車數(shù)量(輛)

2

3

45

5

45

每輛利潤(萬元)

1

2

3

1.8

2.9

將頻率視為概率,解答下列問題:
(Ⅰ)從該廠生產(chǎn)的甲品牌轎車中隨機(jī)抽取一輛,求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(Ⅱ)若該廠生產(chǎn)的轎車均能售出,記住生產(chǎn)一輛甲品牌轎車的利潤為X1 , 生產(chǎn)一輛乙品牌轎車的利潤為X2 , 分別求X1 , X2的分布列;
(Ⅲ)該廠預(yù)計(jì)今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌轎車,若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)該產(chǎn)生哪種品牌的轎車?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙兩車間的月產(chǎn)值在2017年1月份相同,甲車間以后每個(gè)月比前一個(gè)月增加相同的產(chǎn)值,乙車間以后每個(gè)月比前一個(gè)月增加產(chǎn)值的百分比相同.到2017年7月份發(fā)現(xiàn)兩車間的月產(chǎn)值又相同,比較甲、乙兩個(gè)車間2017年4月份月產(chǎn)值的大小,則(  )

A. 甲車間大于乙車間 B. 甲車間等于乙車間

C. 甲車間小于乙車間 D. 不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,某市為促進(jìn)生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾分類投放情況,先隨機(jī)抽取了該市三類垃圾箱總計(jì)1000噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸);

“廚余垃圾”箱

“可回收物”箱

“其他垃圾”箱

廚余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60


(1)試估計(jì)廚余垃圾投放正確的概率;
(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率;
(3)假設(shè)廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為a,b,c,其中a>0,a+b+c=600.當(dāng)數(shù)據(jù)a,b,c的方差s2最大時(shí),寫出a,b,c的值(結(jié)論不要求證明),并求此時(shí)s2的值.
(求:S2= [ + +…+ ],其中 為數(shù)據(jù)x1 , x2 , …,xn的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正三棱錐P﹣ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連接PE并延長交AB于點(diǎn)G.

(1)證明:G是AB的中點(diǎn);
(2)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說明作法及理由),并求四面體PDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓C的方程為 (θ為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長度,直線的極坐標(biāo)方程.

(Ⅰ)當(dāng)時(shí),判斷直線的關(guān)系;

(Ⅱ)當(dāng)上有且只有一點(diǎn)到直線的距離等于時(shí),求上到直線距離為的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)在5秒內(nèi)的任何時(shí)刻,兩條不相關(guān)的短信機(jī)會(huì)均等地進(jìn)入同一部手機(jī),若這兩條短信進(jìn)入手機(jī)的時(shí)間之差小于2秒,手機(jī)就會(huì)受到干擾,則手機(jī)受到干擾的概率為_________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有極值.

(1)求的取值范圍;

(2)若處取得極值,且當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案