【題目】已知△ABC中,AB=AC,D是△ABC外接圓上 上的點(不與點A、C重合),延長BD至F.
(1)求證:AD延長線DF平分∠CDE;
(2)若∠BAC=30°,△ABC中BC邊上的高為2+ ,求△ABC外接圓的面積.
【答案】
(1)證明:如圖,∵A,B,C,D四點共圓,∴∠CDF=∠ABC.
又AB=AC,∴∠ABC=∠ACB,
且∠ADB=∠ACB,∴∠ADB=∠CDF,
又由對頂角相等得∠EDF=∠ADB,故∠EDF=∠CDF,
即AD的延長線DF平分∠CDE
(2)解:設O為外接圓圓心,連接AO并延長交BC于H,則AH⊥BC.連接OC,
由題意∠OAC=∠OCA=15°,∠ACB=75°,∴∠OCH=60°,
設圓半徑為r,則r+ r=2+ ,得r=2,外接圓的面積為4π.
【解析】(1)根據A,B,C,D四點共圓,可得∠ABC=∠CDF,AB=AC可得∠ABC=∠ACB,從而得解.(2)設O為外接圓圓心,連接AO并延長交BC于H,則AH⊥BC.連接OC,設圓半徑為r,則r+ r=2+ ,求出r,即可求△ABC外接圓的面積.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣.
(1)若a>0,試判斷f(x)在定義域內的單調性;
(2)若f(x)在[1,e]上的最小值為,求實數a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數方程為(為參數,且),以為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程為.
(1)若曲線與只有一個公共點,求的值.
(2)為曲線上的兩點,且,求的面積最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0),e= ,其中F是橢圓的右焦點,焦距為2,直線l與橢圓C交于點A、B,點A,B的中點橫坐標為 ,且 =λ (其中λ>1).
(1)求橢圓C的標準方程;
(2)求實數λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】抽樣統計甲、乙兩位射擊運動員的5次訓練成績(單位:環(huán)),結果如下:
運動員 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
甲 | 87 | 91 | 90 | 89 | 93 |
乙 | 89 | 90 | 91 | 88 | 92 |
則成績較為穩(wěn)定(方差較。┑哪俏贿\動員成績的方差為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A(0,3),直線l:y=2x﹣4.設圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x﹣1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了更好地服務民眾,某共享單車公司通過向共享單車用戶隨機派送每張面額為0元,1元,2元的三種騎行券.用戶每次使用掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得1元獎券、獲得2元獎券的概率分別是0.5、0.2,且各次獲取騎行券的結果相互獨立.
(I)求用戶騎行一次獲得0元獎券的概率;
(II)若某用戶一天使用了兩次該公司的共享單車,記該用戶當天獲得的騎行券面額之和為,求隨機變量的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com