【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對30名六年級學(xué)生進行了問卷調(diào)查,得到如下列聯(lián)表(平均每天喝500ml以上為常喝,體重超過50kg為肥胖):
常喝 | 不常喝 | 合計 | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
合計 | 30 |
已知在全部30人中隨機抽取1人,抽到肥胖的學(xué)生的概率為 .
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說明你的理由;
(3)現(xiàn)從常喝碳酸飲料且肥胖的學(xué)生中(2名女生),抽取2人參加電視節(jié)目,則正好抽到一男一女的概率是多少
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2= ,其中n=a+b+c+d)
【答案】
(1)解:設(shè)常喝碳酸飲料肥胖的學(xué)生有x人, .
常喝 | 不常喝 | 合計 | |
肥胖 | 6 | 2 | 8 |
不胖 | 4 | 18 | 22 |
合計 | 10 | 20 | 30 |
(2)解:由已知數(shù)據(jù)可求得:
因此有99.5%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)
(3)解:設(shè)常喝碳酸飲料的肥胖者男生為A、B、C、D,女生為E、F,則任取兩人有 AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15種.
其中一男一女有AE,AF,BE,BF,CE,CF,DE,DF.共8種.
故抽出一男一女的概率是
【解析】(1)設(shè)常喝碳酸飲料肥胖的學(xué)生有x人, .即可將上面的列聯(lián)表補充完整;(2)根據(jù)列聯(lián)表所給的數(shù)據(jù),代入求觀測值的公式,把觀測值同臨界值進行比較,得到有99.5%的把握說看營養(yǎng)說明與性別有關(guān).(3)利用列舉法,求出基本事件的個數(shù),即可求出正好抽到一男一女的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究男女同學(xué)空間想象能力的差異,孫老師從高一年級隨機選取了20名男生、20名女生,進行空間圖形識別測試,得到成績莖葉圖如下,假定成績大于等于80分的同學(xué)為“空間想象能力突出”,低于80分的同學(xué)為“空間想象能力正!.
(1)完成下面列聯(lián)表,并判斷是否有的把握認(rèn)為“空間想象能力突出”與性別有關(guān);
空間想象能力突出 | 空間想象能力正常 | 合計 | |
男生 | |||
女生 | |||
合計 |
(2)從“空間想象能力突出”的同學(xué)中隨機選取男生2名、女生2名,記其中成績超過90分的人數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.
下面公式及臨界值表僅供參考:
0.100 | 0.050 | 0.010 | ||
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), (為常數(shù)).
(1)函數(shù)的圖象在點處的切線與函數(shù)的圖象相切,求實數(shù)的值;
(2)若函數(shù)在定義域上存在單調(diào)減區(qū)間,求實數(shù)的取值范圍;
(3)若, ,且,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以為極點, 軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,( )
(1)寫出直線經(jīng)過的定點的直角坐標(biāo),并求曲線的普通方程;
(2)若,求直線的極坐標(biāo)方程,以及直線與曲線的交點的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,D,E分別為△ABC邊AB,AC的中點,直線DE交△ABC的外接圓于F,G兩點,若CF∥AB,證明:
(1)CD=BC;
(2)△BCD∽△GBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:向量 =(1,﹣3), =(﹣2,m),且 ⊥( ﹣ ).
(1)求實數(shù)m的值;
(2)當(dāng)k + 與 ﹣ 平行時,求實數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在某港口處獲悉,其正東方向距離20n mile的處有一艘漁船遇險等待營救,此時救援船在港口的南偏西30°距港口10n mile的C處,救援船接到救援命令立即從C處沿直線前往B處營救漁船.
(1)求接到救援命令時救援船距漁船的距離;
(2)試問救援船在C處應(yīng)朝北偏東多少度的方向沿直線前往B處救援?(已知)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com