【題目】2019年“兩會”報(bào)告指出,5G在下半年會零星推出,2020年有望實(shí)現(xiàn)大范圍使用。隨著移動通信產(chǎn)業(yè)的發(fā)展,全球移動寬帶(,簡稱)用戶數(shù)已達(dá)54億,占比70%(用戶比例簡稱滲透率),但在部分發(fā)展中國家該比例甚至低于20%。

基站覆蓋率小于80%

基站覆蓋率大于80%

總計(jì)

滲透率低于20%

滲透率高于20%

總計(jì)

(1)現(xiàn)對140個發(fā)展中國家進(jìn)行調(diào)查,發(fā)現(xiàn)140個發(fā)展中國家中有25個國家MBB基站覆蓋率小于80%,其中滲透率低于20%的有15個國家,而基站覆蓋率大于80%的國家中滲透率低于20%的有25個國家.由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為滲透率與基站覆蓋率有關(guān);

(2)基站覆蓋率小于80%,其中滲透率低于20%的國家中手機(jī)占居民人均收入比例和資費(fèi)居民人均收入比例如莖葉圖所示,請根據(jù)莖葉圖求這些國家中的手機(jī)占居民人均收入比例的中位數(shù)和資費(fèi)居民人均收入比例平均數(shù);

(3)根據(jù)以上數(shù)據(jù)判斷,若要提升滲透率,消除數(shù)字化鴻溝,把數(shù)字世界帶入每個人,需要重點(diǎn)解決哪些問題。

附:參考公式:;其中

臨界值表:

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

【答案】(1)見解析;(2)中位數(shù)是3.24%;平均數(shù)約為3.32%;(3)見解析

【解析】

(1)完善列聯(lián)表,再計(jì)算,然后與臨界值表作比較得到答案.

(2)手機(jī)占居民人均收入比例一共是15個數(shù)據(jù),第8個數(shù)據(jù)為中位數(shù),利用平均值公式得到答案.

(3)需要重點(diǎn)解決手機(jī)貴、資費(fèi)高和基站覆蓋低的問題.

解:(1)

基站覆蓋率小于80%

基站覆蓋率大于80%

總計(jì)

滲透率低于20%

15

25

40

滲透率高于20%

10

90

100

總計(jì)

25

115

140

所以有99%的把握認(rèn)為滲透率與基站覆蓋率有關(guān)

(2)手機(jī)占居民人均收入比例一共是15個數(shù)據(jù),第8個數(shù)據(jù)為3.24%,所以中位數(shù)是3.24%;

資費(fèi)居民人均收入比例平均數(shù)約為:3.32%

(3)根據(jù)以上數(shù)據(jù)判斷, 用戶發(fā)展受限的因素分別是手機(jī)、資費(fèi)、基站覆蓋,若要提升滲透率,消除數(shù)字化鴻溝,把數(shù)字世界帶入每個人,需要重點(diǎn)解決手機(jī)貴、資費(fèi)高和基站覆蓋低的問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是正四面體的面內(nèi)一動點(diǎn),為棱中點(diǎn),記與平面成角為定值,若點(diǎn)的軌跡為一段拋物線,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】盒內(nèi)有大小相同的9個球,其中2個紅色球,3個白色球,4個黑色球.規(guī)定取出1個紅色球得1分,取出1個白色球得0分,取出1個黑色球得分,現(xiàn)從盒內(nèi)任取3個球.

(Ⅰ)求取出的3個球中至少有一個紅球的概率;

(Ⅱ)求取出的3個球得分之和恰為1分的概率;

(Ⅲ)設(shè)為取出的3個球中白色球的個數(shù),求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個班級進(jìn)行數(shù)學(xué)考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績后,得到如下的2×2列聯(lián)表.已知從全部210人中隨機(jī)抽取1人為優(yōu)秀的概率為.

(1)請完成上面的2×2列聯(lián)表,并判斷若按99%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)”;

(2)從全部210人中有放回地抽取3次,每次抽取1人,記被抽取的3人中的優(yōu)秀人數(shù)為ξ,若每次抽取的結(jié)果是相互獨(dú)立的,求ξ的分布列及數(shù)學(xué)期望E(ξ).

P(K2k0)

0.05

0.01

k0

3.841

6.635

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市垃圾處理廠的垃圾年處理量(單位:千萬噸)與資金投入量x(單位:千萬元)有如下統(tǒng)計(jì)數(shù)據(jù):

2012

2013

2014

2015

2016

資金投入量x(千萬元)

1.5

1.4

1.9

1.6

2.1

垃圾處理量y(千萬噸)

7.4

7.0

9.2

7.9

10.0

1)若從統(tǒng)計(jì)的5年中任取2年,求這2年的垃圾處理量至少有一年不低于8.0(千萬噸)的概率;

2)由表中數(shù)據(jù)求得線性回歸方程為,該垃圾處理廠計(jì)劃2017年的垃圾處理量不低于9.0千萬噸,現(xiàn)由垃圾處理廠決策部門獲悉2017年的資金投入量約為1.8千萬元,請你預(yù)測2017年能否完成垃圾處理任務(wù),若不能,缺口約為多少千萬噸?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省積極響應(yīng)教育部號召實(shí)行新課程改革,為了調(diào)查某校高三學(xué)生的物理考試成績是否達(dá)到級與學(xué)生性別是否有關(guān),從該校高三學(xué)生中隨機(jī)抽取了部分男女生的成績得到如下列聯(lián)表:

考試成績達(dá)到

考試成績未達(dá)到

總計(jì)

男生

26

40

女生

6

總計(jì)

70

1)(。⿲列聯(lián)表補(bǔ)充完整;

(ⅱ)據(jù)此列聯(lián)表判斷,能否有的把握認(rèn)為物理考試成績是否達(dá)到級與性別有關(guān)?

2)將頻率視作概率,從該校高三年級任意抽取3名學(xué)生的成績,求物理考試成績達(dá)到級的人數(shù)的分布列及期望.

附:

0.050

0.010

0.001

3.841

6.635

10..828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從學(xué)生會宣傳部6名成員(其中男生4人,女生2)中,任選3人參加某省舉辦的我看中國改革開放三十年演講比賽活動.

(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;

(2)求男生甲或女生乙被選中的概率;

(3)設(shè)男生甲被選中為事件A,女生乙被選中為事件B,求P(B)P(B|A)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過點(diǎn)P(3,2),且在兩坐標(biāo)軸上的截距相等的直線方程為(寫出一般式)___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于獨(dú)立性檢驗(yàn)的敘述

①常用等高條形圖表示列聯(lián)表數(shù)據(jù)的頻率特征;

②獨(dú)立性檢驗(yàn)依據(jù)小概率原理;

③獨(dú)立性檢驗(yàn)的結(jié)果是完全正確的;

④對分類變量的隨機(jī)變量的觀測值來說,越小,有關(guān)系的把握程度就越大.

其中敘述正確的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案