【題目】定義:對(duì)于實(shí)數(shù)和兩定點(diǎn),在某圖形上恰有個(gè)不同的點(diǎn),使得,稱該圖形滿足“度契合”.若邊長為4的正方形中,,且該正方形滿足“4度契合”,則實(shí)數(shù)的取值范圍是__________

【答案】

【解析】

分析:根據(jù)定義,分類討論P點(diǎn)在四條邊上的不同情況;轉(zhuǎn)化成m的表達(dá)式后,利用二次函數(shù)求得m的范圍;分析在四種情況下,哪個(gè)符合有4個(gè)解,即可得到m的取值。

詳解:以ABx軸,ADy軸,A為原點(diǎn)建立平面直角坐標(biāo)系。所以 。因?yàn)?/span>P點(diǎn)位置不確定,所以分四種情況討論:

當(dāng)P點(diǎn)在AB上時(shí),設(shè) ,

所以

所以

根據(jù)二次函數(shù)的圖像可知,當(dāng) 時(shí),有1個(gè)解

當(dāng) 時(shí),有2個(gè)解

(2)當(dāng)P點(diǎn)在BC上時(shí),設(shè) ,

所以

所以

根據(jù)二次函數(shù)的圖像可知,當(dāng) 時(shí),有1個(gè)解

當(dāng) 時(shí),有2個(gè)解

當(dāng) 時(shí),有1個(gè)解

(3)當(dāng)P點(diǎn)在CD上時(shí),設(shè) ,

所以

所以

根據(jù)二次函數(shù)的圖像可知,當(dāng) 時(shí),有1個(gè)解

當(dāng) 時(shí),有2個(gè)解

(4)當(dāng)P點(diǎn)在AD上時(shí),設(shè)

所以

所以

根據(jù)二次函數(shù)的圖像可知,當(dāng) 時(shí),有1個(gè)解

當(dāng) 時(shí),有2個(gè)解

當(dāng) 時(shí),有2個(gè)解

由(1)可知,當(dāng) 時(shí),有2個(gè)解。所以當(dāng) 時(shí),也有2個(gè)解

綜上所述,當(dāng)4個(gè)解,滿足度契合”。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面四邊形中, ,將沿折起,使得平面平面,如圖.

(1)求證: ;

(2)若中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (e為自然對(duì)數(shù)的底).若函數(shù)g(x)=f(x)﹣kx恰好有兩個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是(
A.(1,e)
B.(e,10]
C.(1,10]
D.(10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】提高過江大橋的車輛通行的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度(單位:千米/小時(shí))是車流密度(單位:輛/千米)

的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),就會(huì)造成堵塞,此時(shí)車流速度為0;當(dāng)

車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí).研究表明:當(dāng)時(shí),

車流速度是車流密度的一次函數(shù).

(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;

(2)如果車流量(單位時(shí)間內(nèi)通過橋上某觀測(cè)點(diǎn)的車輛數(shù)) (單位:輛/小時(shí)),那么當(dāng)車流密度為多大時(shí),車流量可以達(dá)到最大,并求出最大值.(精確到輛/小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中是真命題的是( )

①“若x2+y20,則x,y不全為零的否命題 ②“正多邊形都相似的逆命題

③“若m>0,則x2+x-m=0有實(shí)根的逆否命題④“若x-是有理數(shù),則x是

無理數(shù)的逆否命題

A、①②③④ B、①③④ C、②③④ D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄A過點(diǎn),且與圓相內(nèi)切.

I)求動(dòng)圓的圓心的軌跡方程;

II)設(shè)直線(其中與(1)中所求軌跡交于不同兩點(diǎn),D,與雙曲線交于不同兩點(diǎn),問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論不正確的是________(填序號(hào)).

各個(gè)面都是三角形的幾何體是三棱錐;

以三角形的一條邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐;

棱錐的側(cè)棱長與底面多邊形的邊長相等,則此棱錐可能是六棱錐;

圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線都是母線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量按照空氣質(zhì)量指數(shù)大小分為七檔(五級(jí)),相對(duì)應(yīng)空氣質(zhì)量的七個(gè)類別,指數(shù)越大,說明污染的情況越嚴(yán)重,對(duì)人體危害越大.

指數(shù)

級(jí)別

類別

戶外活動(dòng)建議

優(yōu)

可正;顒(dòng)

輕微污染

易感人群癥狀有輕度加劇,健康人群出現(xiàn)刺激癥狀,心臟病和呼吸系統(tǒng)疾病患者應(yīng)減少體積消耗和戶外活動(dòng).

輕度污染

中度污染

心臟病和肺病患者癥狀顯著加劇,運(yùn)動(dòng)耐受力降低,健康人群中普遍出現(xiàn)癥狀,老年人和心臟病、肺病患者應(yīng)減少體力活動(dòng).

中度重污染

重污染

健康人運(yùn)動(dòng)耐受力降低,由明顯強(qiáng)烈癥狀,提前出現(xiàn)某些疾病,老年人和病人應(yīng)當(dāng)留在室內(nèi),避免體力消耗,一般人群應(yīng)盡量減少戶外活動(dòng).

現(xiàn)統(tǒng)計(jì)邵陽市市區(qū)2016年1月至11月連續(xù)60天的空氣質(zhì)量指數(shù),制成如圖所示的頻率分布直方圖.

(1)求這60天中屬輕度污染的天數(shù);

(2)求這60天空氣質(zhì)量指數(shù)的平均值;

(3)將頻率分布直方圖中的五組從左到右依次命名為第一組,第二組,…,第五組.從第一組和第五組中的所有天數(shù)中抽出兩天,記它們的空氣質(zhì)量指數(shù)分別為 ,求事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若關(guān)于的不等式的解集是,求,的值;

(2)設(shè)關(guān)于的不等式的解集是,集合,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案