(1)用t表示a、b、c;
(2)若函數(shù)y=f(x)-g(x)在(-1,3)上單調(diào)遞減,求t的取值范圍.
解析:(1)因?yàn)楹瘮?shù)f(x)、g(x)的圖象都過(guò)點(diǎn)(t,0),
所以f(t)=0,即t3+at=0.?
因?yàn)閠≠0,所以a=-t2.?
g(t)=0,即bt2+c=0,所以c=ab.?
又因?yàn)?I >f(x)、g(x)在點(diǎn)(t,0)處有相同的切線,所以f′(t)=g′(t).?
而f′(x)=3x2+a,g′(x)=2bx,所以3t2+a=2bt.?
將a=-t2代入上式得b=t.?
因此c=ab=-t3.?
故a=-t2,b=t,c=-t3.?
(2)解法一:y=f(x)-g(x)=x3-t2x-tx2+t3,y′=3x2-2tx-t2=(3x+t)(x-t).?
當(dāng)y′=(3x+t)(x-t)<0時(shí),函數(shù)y=f(x)-g(x)單調(diào)遞減.?
由y′<0,若t>0,則-<x<t;?
若t<0,則t<x<-.?
由題意,函數(shù)y=f(x)-g(x)在(-1,3)上單調(diào)遞減,則(-1,3)?(-,t)或(-1,3)?(t,- ).?
所以t≥3或-≥3,?
即t≤-9或t≥3.?
又當(dāng)-9<t<3時(shí),函數(shù)y=f(x)-g(x)在(-1,3)上不單調(diào)遞減.?
所以t的取值范圍為(-∞,-9]∪[3,+∞).?
解法二:y=f(x)-g(x)=x3-t2x-tx2+t3,?
y′=3x2-2tx-t2=(3x+t)(x-t).?
因?yàn)楹瘮?shù)y=f(x)-g(x)在(-1,3)上單調(diào)遞減,且y′=(3x+t)(x-t)是(-1,3)上的拋物線,
所以?
即?
解得t≤-9或t≥3.?
所以t的取值范圍為(-∞,-9]∪[3,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
F1Q |
PT |
TF2 |
TF2 |
F1P |
c |
a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
e1 |
e2 |
e1 |
e2 |
e1 |
e2 |
e1 |
e2 |
e1 |
e2 |
PQ |
P0Q0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)用t表示a、b、c;
(2)若函數(shù)y=f(x)-g(x)在(-1,3)上單調(diào)遞減,求t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com