試題分析:(1)解法1是將函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730403495.png)
在其定義域
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730637566.png)
上為增函數(shù)等價(jià)轉(zhuǎn)化為不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730653624.png)
在區(qū)間
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730637566.png)
上恒成立,利用參數(shù)分離法得到不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730684608.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730637566.png)
上恒成立,并利用基本不等式求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730715476.png)
的最小值,從而求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730731278.png)
的取值范圍;解法2是求得導(dǎo)數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730746934.png)
,將問題等價(jià)轉(zhuǎn)化為不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730762677.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730637566.png)
上恒成立,結(jié)合二次函數(shù)零點(diǎn)分布的知識求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730731278.png)
的取值范圍;(2)先將
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730809336.png)
代入函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730824491.png)
的解析式并求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730824491.png)
的導(dǎo)數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240437308401064.png)
,構(gòu)造新函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730855776.png)
,利用導(dǎo)數(shù)研究函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730871523.png)
的單調(diào)性,結(jié)合零點(diǎn)存在定理找出函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730824491.png)
的極值點(diǎn)所存在的區(qū)間,結(jié)合條件
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730902506.png)
確定
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730559267.png)
的最大值.
試題解析:(1)解法1:函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730403495.png)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730637566.png" style="vertical-align:middle;" />,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730980837.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730996878.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731011222.png)
函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730403495.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730637566.png)
上單調(diào)遞增,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731043653.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731058671.png)
對
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731089688.png)
都成立.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731105636.png)
對
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731089688.png)
都成立.
當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731121393.png)
時(shí),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731136892.png)
,當(dāng)且僅當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731152474.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731167523.png)
時(shí),取等號.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731183536.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731199518.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731214300.png)
的取值范圍為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730606690.png)
.
解法2:函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730403495.png)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730637566.png" style="vertical-align:middle;" />,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730980837.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240437312921130.png)
.
方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731308648.png)
的判別式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731323546.png)
.
①當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731339421.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731355627.png)
時(shí),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730762677.png)
,
此時(shí),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730653624.png)
對
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731089688.png)
都成立,
故函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730403495.png)
在定義域
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730637566.png)
上是增函數(shù).
②當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731511425.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731526510.png)
或
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731542504.png)
時(shí),要使函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730403495.png)
在定義域
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730637566.png)
上為增函數(shù),
只需
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730762677.png)
對
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731089688.png)
都成立.
設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731620817.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240437316351061.png)
,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731651398.png)
.
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731542504.png)
.
綜合①②得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730497283.png)
的取值范圍為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730606690.png)
;
(2)當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730512337.png)
時(shí),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240437317291290.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240437308401064.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731011222.png)
函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730824491.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730543871.png)
上存在極值,
∴方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731823595.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730543871.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731854239.png)
上有解,
即方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731869598.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730543871.png)
上有解.
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731901773.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731916529.png)
,由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731121393.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731963865.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731979191.png)
函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730871523.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730637566.png)
上單調(diào)遞減.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240437321031579.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240437321191540.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731979191.png)
函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730871523.png)
的零點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043732166662.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043731011222.png)
方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043732181596.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730543871.png)
上有解,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730902506.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043732228419.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043732244535.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043732259296.png)
的最大值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043730606287.png)
.