【題目】如圖,直四棱柱的底面是菱形,,,EM,N分別是,的中點.

1)證明:平面;

2)求點C到平面的距離.

【答案】1)見解析(2

【解析】

1)連結(jié),利用三角形中位線的性質(zhì)和線面平行的判定定理即可得證;

2)過C的垂線,垂足為H,利用線面垂直的判定定理和性質(zhì)定理可證平面,即的長即為C到平面的距離,在中利用三角形面積相等求出即可.

1)證明:如圖所示:連結(jié),,因為ME分別為,的中點,

所以,且,又因為N的中點,所以.

由題設知,可得,故,即四邊形為平行四邊形,

所以,又平面,平面,所以平面.

2)過C的垂線,垂足為H,由已知可得,,

所以平面,故,因為,,

所以平面,故的長即為C到平面的距離,

由已知可得,,所以,

,所以點C到平面的距離為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)則不等式的解集為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,平面ABCD,,M是線段AB的中點.

1)求證:平面PAB;

2)已知點N是線段PB的中點,試判斷直線CN與平面PAD的位置關系,并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求的單調(diào)遞增區(qū)間;

(2)證明:當時,有兩個零點;

(3)若,函數(shù)處取得最小值,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關于回歸分析的說法中錯誤的是( )

A. 回歸直線一定過樣本中心

B. 殘差圖中殘差點比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適

C. 兩個模型中殘差平方和越小的模型擬合的效果越好

D. 甲、乙兩個模型的分別約為0.98和0.80,則模型乙的擬合效果更好

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=log44x+1+kxgx=log4a2xa),其中fx)是偶函數(shù).

1)求實數(shù)k的值;

2)求函數(shù)gx)的定義域;

(3)若函數(shù)fx)與gx)的圖象有且只有一個公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正四棱錐中,為底面正方形的中心,側(cè)棱與底面所成的角的正切值為

1)求側(cè)面與底面所成的二面角的大;

2)若的中點,求異面直線所成角的正切值;

3)問在棱上是否存在一點,使⊥側(cè)面,若存在,試確定點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中表示不超過的最大整數(shù),下列關于說法正確的有:______

的值域為[-1,1]

為奇函數(shù)

為周期函數(shù),且最小正周期T=4

在[0,2)上為單調(diào)增函數(shù)

的圖像有且僅有兩個公共點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機抽取10天的數(shù)據(jù),制表如圖:

每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以內(nèi)(含35件)的部分每件4元,超出35件的部分每件7.

1)根據(jù)表中數(shù)據(jù)寫出甲公司員工A在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);

2)為了解乙公司員工B的每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為X(單位:元),求X的分布列和數(shù)學期望;

3)根據(jù)表中數(shù)據(jù)估算兩公司的每位員工在該月所得的勞務費.

查看答案和解析>>

同步練習冊答案