【題目】已知數(shù)列的各項均為正數(shù),,且對任意,都有,數(shù)列前n項的和.
(1)若數(shù)列是等比數(shù)列,求的值和;
(2)若數(shù)列是等差數(shù)列,求和的關(guān)系式;
(3),當(dāng)時,求證: 是一個常數(shù).
【答案】(1); (2); (3)見解析.
【解析】
(1)確定數(shù)列的通項,利用,可得c的值,分類討論求和可得;
(2)求出數(shù)列的公差,利用,建立關(guān)系式,可得和的關(guān)系式;
(3)利用分析法進(jìn)行證明.
(1)由題意得:,
,
因為數(shù)列的各項均為正數(shù),所以
當(dāng)時,,,
當(dāng)且時,,
當(dāng)時,
當(dāng)時,,
所以
(2)由題意得:
,,
,
(3)計算,
猜想
欲證明恒成立
只需要證明恒成立
即要證明恒成立
即要證明恒成立(***)
,
,
(***)左邊
(***)右邊
所以(***)成立
方法二:計算
猜想
,
由于,上式兩邊同除以,
得.
所以,.
所以是常數(shù)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,楔形幾何體由一個三棱柱截去部分后所得,底面側(cè)面,,楔面是邊長為2的正三角形,點在側(cè)面的射影是矩形的中心,點在上,且
(1)證明:平面;
(2)求楔面與側(cè)面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知多面體中,,,,,為的中點。
(Ⅰ)求證:平面;
(Ⅱ)求異面直線和所成角的余弦值;
(Ⅲ)求直線與平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中錯誤的是( )
A.命題“若,則”的逆否命題是真命題
B.命題“,”的否定是“,”
C.若為真命題,則為真命題
D.在中,“”是“”的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間與極值;
(Ⅱ)若不等式對任意恒成立,求實數(shù)的取值范圍;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項和為,且滿足,數(shù)列中,,對任意正整數(shù),.
(1)求數(shù)列的通項公式;
(2)是否存在實數(shù),使得數(shù)列是等比數(shù)列?若存在,請求出實數(shù)及公比q的值,若不存在,請說明理由;
(3)求數(shù)列前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次購物抽獎活動中,已知某10張獎券中有6張有獎,其余4張沒有獎,且有獎的6張獎券每張均可獲得價值10元的獎品.某顧客從此10張獎券中任意抽取3張.
(1)求該顧客中獎的概率;
(2)若約定抽取的3張獎券都有獎時,還要另獎價值6元的獎品,求該顧客獲得的獎品總價值(元)的分布列和均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,直線不經(jīng)過橢圓上頂點,與橢圓交于,不同兩點.
(1)當(dāng),時,求橢圓的離心率的取值范圍;
(2)若,直線與的斜率之和為,證明:直線過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com