【題目】根據(jù)以往的經(jīng)驗(yàn),某建筑工程施工期間的降水量(單位:)對工期的影響如下表:

降水量

工期延誤天數(shù)

0

1

3

6

根據(jù)某氣象站的資料,某調(diào)查小組抄錄了該工程施工地某月前天的降水量的數(shù)據(jù),繪制得到降水量的折線圖,如下圖所示.

(1)求這天的平均降水量;

(2)根據(jù)降水量的折線圖,分別估計(jì)該工程施工延誤天數(shù)的概率.

【答案】(1)433(2)見解析

【解析】試題分析:(1)根據(jù)平均數(shù)的計(jì)算公式即可求得這天的平均降水量;(2)的天數(shù)為,的天數(shù)為,的天數(shù)為的天數(shù)為,由此能求出該工程施工延誤天數(shù),,的頻率.

試題解析:(1)這天的平均降水量為.

(2)的天數(shù)為

的頻率為,故估計(jì)的概率為.

的天數(shù)為

的頻率為,故估計(jì)的概率為.

的天數(shù)為

的頻率為,故估計(jì)的概率為.

的天數(shù)為

的頻率為,故估計(jì)的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】絕對值|x1|的幾何意義是數(shù)軸上的點(diǎn)x與點(diǎn)1之間的距離,那么對于實(shí)數(shù)a,b的幾何意義即為點(diǎn)x與點(diǎn)a、點(diǎn)b的距離之和.

1)直接寫出的最小值,并寫出取到最小值時(shí)x滿足的條件;

2)設(shè)a1a2≤…≤an是給定的n個實(shí)數(shù),記S=.試猜想:若n為奇數(shù),則當(dāng)x      時(shí)S取到最小值;若n為偶數(shù),則當(dāng)x      時(shí),S取到最小值;(直接寫出結(jié)果即可)

3)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,曲線,,C與l有且僅有一個公共點(diǎn).

(Ⅰ)求a

(Ⅱ)O為極點(diǎn),A,B為C上的兩點(diǎn),且,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為常數(shù),函數(shù),給出以下結(jié)論:

(1)若,則存在唯一零點(diǎn)

(2)若,則

(3)若有兩個極值點(diǎn),則

其中正確結(jié)論的個數(shù)是( )

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校在九年級上學(xué)期開始時(shí)要掌握全年級學(xué)生每分鐘跳繩的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行測試,得到頻率分布直方圖(如圖),且規(guī)定計(jì)分規(guī)則如下表:

每分鐘跳繩個數(shù)

得分

17

18

19

20

1)請估計(jì)學(xué)生的跳繩個數(shù)的眾數(shù)和平均數(shù)(保留整數(shù));

2)若從跳繩個數(shù)在,兩組中按分層抽樣的方法抽取9人參加正式測試,并從中任意選取2人,求2人得分之和不大于34分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)以往的經(jīng)驗(yàn),某建筑工程施工期間的降水量(單位:)對工期的影響如下表:

降水量

工期延誤天數(shù)

0

1

3

6

根據(jù)某氣象站的資料,某調(diào)查小組抄錄了該工程施工地某月前天的降水量的數(shù)據(jù),繪制得到降水量的折線圖,如下圖所示.

(1)根據(jù)降水量的折線圖,分別求該工程施工延誤天數(shù)的頻率;

(2)以(1)中的頻率作為概率,求工期延誤天數(shù)的分布列及數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形中,的中點(diǎn),點(diǎn)在線段上,且.若將 分別沿折起,使兩點(diǎn)重合于點(diǎn),如圖2.

圖1 圖2

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論上的零點(diǎn)個數(shù);

(2)當(dāng)時(shí),若存在,使,求實(shí)數(shù)的取值范圍.(為自然對數(shù)的底數(shù),其值為2.71828……)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx)是R上的奇函數(shù),且x>0時(shí),fx=x2-4x+3

求:(1fx)的解析式.

2)已知t0,求函數(shù)fx)在區(qū)間[t,t+1]上的最小值.

查看答案和解析>>

同步練習(xí)冊答案