精英家教網 > 高中數學 > 題目詳情
(2012•濰坊二模)①函數y=sin(x-
π
2
)
在[0,π]上是減函數;
②點A(1,1)、B(2,7)在直線3x-y=0兩側;
③數列{an}為遞減的等差數列,a1+a5=0,設數列{an}的前n項和為Sn,則當n=4時,Sn取得最大值;
④定義運算
.
a1
b1
a2
b2
.
=a1b2-a2b1
則函數f(x)=
.
x2+3x
x
1
1
3
x
.
的圖象在點(1,
1
3
)
處的切線方程是6x-3y-5=0.
其中正確命題的序號是
②④
②④
(把所有正確命題的序號都寫上).
分析:①,利用誘導公式將y=sin(x-
π
2
)轉化為y=-cosx,利用余弦函數的單調性即可判斷其正誤;
②,將A(1,1)、B(2,7)的坐標分別代入3x-y,觀察乘積的符號即可判斷;
③,由題意結合等差數列的性質可判斷③的正誤;
④,依題意可求得f(x)的解析式,從而可求得在點(1,
1
3
)處的切線方程,繼而可作出判斷;
解答:解:①,∵y=sin(x-
π
2
)=-cosx,在[0,π]上是增函數,故①錯誤;
②,將A(1,1)、B(2,7)的坐標分別代入3x-y得(3×1-1)•(3×2-7)=-2<0,故點A(1,1)、B(2,7)在直線3x-y=0兩側,即②正確;
③,∵數列{an}為遞減的等差數列,a1+a5=0,又a1+a5=2a3
∴2a3=0,
故當n=2或3時Sn取得最大值,故③錯誤;
④,∵
.
a1a2
b1b2
.
=a1b2-a2b1,
∴f(x)=
.
x2+3x1
x
1
3
x
.
=
1
3
x3+x2-x,
∴[f′(x)]|x=1=(x2+2x-1)|x=1=2,
∴f(x)的圖象在點(1,
1
3
)處的切線方程為:y-
1
3
=2(x-1),整理得:6x-3y-5=0,故④正確;
綜上所述,正確答案為②④.
故答案為:②④.
點評:本題考查命題的真假判斷與應用,考查三角函數、平面區(qū)域、等差數列、及函數與導數等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•濰坊二模)已知兩條直線a,b與兩個平面α、β,b⊥α,則下列命題中正確的是( 。
①若a∥α,則a⊥b;
②若a⊥b,則a∥α; 
③若b⊥β,則α∥β;
④若α⊥β,則b∥β.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•濰坊二模)已知向量
a
=(x,-2),
b
=(y,1),其中x,y都是正實數,若
a
b
,則t=x+2y的最小值是
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•濰坊二模)已知函數f(x)的圖象向左平移1個單位后關于y軸對稱,當x2>x1>1時,[f(x2)-f(x1)](x2-x1)<0恒成立,設a=f(-
1
2
),b=f(2),c=f(3),則a、b、c的大小關系為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•濰坊二模)已知雙曲線C:
x2
4
-
y2
5
=1
的左、右焦點分別為F1、F2,P為C的右支上一點,且|PF2|=|F1F2|,則
PF1
PF2
等于( 。

查看答案和解析>>

同步練習冊答案