【題目】設(shè)函數(shù)

1)討論的單調(diào)性;

2)設(shè),若上恒成立,求a的取值范圍.

【答案】1)當(dāng)時,上單遞增;當(dāng)時,上單調(diào)遞減,上單調(diào)遞增;(2

【解析】

1)求導(dǎo),對參數(shù)進行分類討論,根據(jù)導(dǎo)數(shù)的正負即可容易判斷函數(shù)單調(diào)性;

2)對參數(shù)進行分類討論,根據(jù)函數(shù)的單調(diào)性,結(jié)合函數(shù)的最值,即可求得結(jié)果.

1定義域為,

當(dāng)時,上恒成立,此時上單遞增;

當(dāng)時,令(舍去)

當(dāng)時,,此時單調(diào)遞減

當(dāng)時,,此時單調(diào)遞增

綜上:當(dāng)時,上單遞增

當(dāng)時,上單調(diào)遞減

上單調(diào)遞增

2)由題意,上恒成立.

①若,

,,則

,,,

上單調(diào)遞增,成立,

時,成立.

②若時,令,

上單調(diào)遞增﹐即有

,即

要使成立,必有成立.

由(1)可知,時,,又,

則必有,得

此時,

恒成立,故上單調(diào)遞增,

時,成立.

綜上,a的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為抗擊新冠病毒,某部門安排甲、乙、丙、丁、戊五名專家到三地指導(dǎo)防疫工作.因工作需要,每地至少需安排一名專家,其中甲、乙兩名專家必須安排在同一地工作,丙、丁兩名專家不能安排在同一地工作,則不同的分配方法總數(shù)為(

A.18B.24C.30D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點為,準線為,為過焦點且垂直于軸的拋物線的弦,已知以為直徑的圓經(jīng)過點.

1)求的值及該圓的方程;

2)設(shè)上任意一點,過點的切線,切點為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019冠狀病毒。CoronaVirus Disease2019COVID-19))是由新型冠狀病毒(2019-nCoV)引發(fā)的疾病,目前全球感染者以百萬計,我國在黨中央、國務(wù)院、中央軍委的堅強領(lǐng)導(dǎo)下,已經(jīng)率先控制住疫情,但目前疫情防控形勢依然嚴峻,湖北省中小學(xué)依然延期開學(xué),所有學(xué)生按照停課不停學(xué)的要求,居家學(xué)習(xí).小李同學(xué)在居家學(xué)習(xí)期間,從網(wǎng)上購買了一套高考數(shù)學(xué)沖刺模擬試卷,快遞員計劃在下午400500之間送貨到小區(qū)門口的快遞柜中,小李同學(xué)父親參加防疫志愿服務(wù),按規(guī)定,他換班回家的時間在下午430500,則小李父親收到試卷無需等待的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點為F,點,過M的直線與橢圓E交于A,B兩點,線段AB中點為C,設(shè)橢圓EA,B兩點處的切線相交于點PO為坐標原點.

1)證明:O、C、P三點共線;

2)已知是拋物線的弦,所在直線過該拋物線的準線與y軸的交點,是弦在兩端點處的切線的交點,小明同學(xué)猜想:在定直線上.你認為小明猜想合理嗎?若合理,請寫出所在直線方程;若不合理,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù),對任意,都有成立,若函數(shù)的圖象關(guān)于直線對稱,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間與極值.

(2)當(dāng)時,是否存在,使得成立?若存在,求實數(shù)的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A,B是橢圓C)的左右頂點,P點為橢圓C上一點,點P關(guān)于x軸的對稱點為H,且

1)若橢圓C經(jīng)過了圓的圓心,求橢圓C的標準方程;

2)在(1)的條件下,拋物線D的焦點F與點關(guān)于y軸上某點對稱,且拋物線D與橢圓C在第四象限交于點Q,過點Q作直線與拋物線D有唯一公共點,求該直線與兩坐標軸圍成的三角形面積.

查看答案和解析>>

同步練習(xí)冊答案