【題目】已知函數(shù)fxcosθ+1cos2x+cosθcosx+1),有下述四個結(jié)論:①fx)是偶函數(shù);②fx)在(,)上單調(diào)遞減;③當(dāng)θ∈[,]時,有|fx)|;④當(dāng)θ∈[,]時,有|f'(x)|;其中所有真命題的編號是( )

A.①③B.②④C.①③④D.①④

【答案】D

【解析】

對①直接進(jìn)行奇偶性的判斷即可,對②③④可用換元法,轉(zhuǎn)化成二次函數(shù)的圖像與性質(zhì)進(jìn)行判斷即可.

①函數(shù)的定義域為R,

f(﹣x)=(cosθ+1cos2(﹣x)+cosθ[cos(﹣x)+1]=(cosθ+1cos2x+cosθcosx+1)=fx),

fx)是偶函數(shù),即①正確;

fx)=2cosθ+1cos2x+cosθcosx1,

設(shè)t=cosx,則ft)=2cosθ+1t2+tcosθ1,

2cosθ+10,∴二次函數(shù)的開口向上,

函數(shù)的對稱軸為t,且t的正負(fù)與cosθ的取值有關(guān),

fx)在()上不一定單調(diào)遞減,即②錯誤;

③當(dāng)θ∈[,]時,cosθ∈[,],

fx)=2cosθ+1cos2x+cosθcosx1

設(shè)t=cosx,則t

ft)=2cosθ+1t2+tcosθ1,

2cosθ+10,∴二次函數(shù)的開口向上,

函數(shù)的對稱軸為t,

,

,

當(dāng), 故③錯誤.

④當(dāng)θ∈[,]時,cosθ∈[,]

,故④成立.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求在點處的切線方程;

2)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍;

3)證明:當(dāng)時,不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線上點作三條斜率分別為,,的直線,,與拋物線分別交于不同于的點.若,,則以下結(jié)論正確的是(

A.直線過定點B.直線斜率一定

C.直線斜率一定D.直線斜率一定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車品牌為了了解客戶對于其旗下的五種型號汽車的滿意情況,隨機抽取了一些客戶進(jìn)行回訪,調(diào)查結(jié)果如下表:

汽車型號

I

II

III

IV

V

回訪客戶(人數(shù))

250

100

200

700

350

滿意率

0.5

0.3

0.6

0.3

0.2

滿意率是指:某種型號汽車的回訪客戶中,滿意人數(shù)與總?cè)藬?shù)的比值.

假設(shè)客戶是否滿意互相獨立,且每種型號汽車客戶對于此型號汽車滿意的概率與表格中該型號汽車的滿意率相等.

(1)從所有的回訪客戶中隨機抽取1人,求這個客戶滿意的概率;

(2)從I型號和V型號汽車的所有客戶中各隨機抽取1人,設(shè)其中滿意的人數(shù)為,求的分布列和期望;

(3)用 “”, “”, “”, “”, “”分別表示I, II, III, IV, V型號汽車讓客戶滿意, “”, “”, “”, “”, “” 分別表示I, II, III, IV, V型號汽車讓客戶不滿意.寫出方差的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的方程是,曲線C的參數(shù)方程是φ為參數(shù)).以坐標(biāo)原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求直線l和曲線C的極坐標(biāo)方程;

2)若是曲線C上一點,是直線l上一點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的中a1=1,a2=2,且滿足.

1)求數(shù)列{an}的通項公式;

2)設(shè)bn,記數(shù)列{bn}的前n項和為Tn,若|Tn+1|,求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,平面,,,的中點,的中點.

1)證明:平面平面;

2)在線段上是否存在一點,使平面?若存在,指出點的位置并給出證明,若不存在,說明理由;

3)若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,已知平面,是邊長為的正三角形,、分別為的中點.

1)若,求直線所成角的余弦值;

2)若平面平面,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直五棱柱,中,,,,,.

1)證明:平面;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案