【題目】為弘揚中華民族優(yōu)秀傳統(tǒng)文化,樹立正確的價值導(dǎo)向,落實立德樹人根本任務(wù),某市組織30000名高中學(xué)生進行古典詩詞知識測試,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機抽取100名學(xué)生,記錄他們的分?jǐn)?shù),整理所得頻率分布直方圖如圖:
(Ⅰ)規(guī)定成績不低于60分為及格,不低于85分為優(yōu)秀,試估計此次測試的及格率及優(yōu)秀率;
(Ⅱ)試估計此次測試學(xué)生成績的中位數(shù);
(Ⅲ)已知樣本中有的男生分?jǐn)?shù)不低于80分,且樣本中分?jǐn)?shù)不低于80分的男女生人數(shù)相等,試估計參加本次測試30000名高中生中男生和女生的人數(shù).
【答案】(I),;(II)76;(Ⅲ)男生18000人,女生12000人.
【解析】
(Ⅰ)根據(jù)頻率分布直方圖,求得各組數(shù)據(jù)對應(yīng)的頻率,進而求得及格率與優(yōu)秀率.
(Ⅱ)從左側(cè)開始,加至頻率為0.5,即可求得對應(yīng)底邊的數(shù)值,即為中位數(shù).
(Ⅲ)先求得不低于80分的總?cè)藬?shù),即可得出樣本中男生和女生的人數(shù).根據(jù)分層抽樣的特征,即可求得參與測試的男生和女生人數(shù).
(I)由頻率分布直方圖可得各組數(shù)據(jù)對應(yīng)頻率分別為:
該校高二年級此次測試的及格率為:,
該校高二年級此次測試的優(yōu)秀率為:,
(II)由頻率分布直方圖可得對應(yīng)頻率為:
估計此次測試學(xué)生成績的中位數(shù)為:
(Ⅲ)樣本中分?jǐn)?shù)不低于80分的學(xué)生共有人,
因為樣本中分?jǐn)?shù)不低于80分的男女生人數(shù)相等,
所以分?jǐn)?shù)不低于80分的男生有20人,
故樣本中男生60人,女生40人,
由分層抽樣可得該市高中男生18000人,女生12000人.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點,其左焦點為.過點的直線交橢圓于、兩點,交軸的正半軸于點.
(1)求橢圓的方程;
(2)過點且與垂直的直線交橢圓于、兩點,若四邊形的面積為,求直線的方程;
(3)設(shè),,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),對于項數(shù)為的有窮數(shù)列,令為中最大值,稱數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7. 考查正整數(shù)1,2,…,的所有排列,將每種排列都視為一個有窮數(shù)列.
(1)若,寫出創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列;
(2)是否存在數(shù)列的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的的創(chuàng)新數(shù)列;若不存在,請說明理由.
(3)是否存在數(shù)列,使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出滿足所有條件的數(shù)列的個數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點滿足方程.
(1)求點M的軌跡C的方程;
(2)作曲線C關(guān)于軸對稱的曲線,記為,在曲線C上任取一點,過點P作曲線C的切線l,若切線l與曲線交于A,B兩點,過點A,B分別作曲線的切線,證明的交點必在曲線C上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,為兩非零有理數(shù)列(即對任意的,,均為有理數(shù)),為一個無理數(shù)列(即對任意的,為無理數(shù)).
(1)已知,并且對任意的恒成立,試求的通項公式;
(2)若為有理數(shù)列,試證明:對任意的,恒成立的充要條件為;
(3)已知,,試計算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列,滿足:對任意正整數(shù),都有,,成等差數(shù)列,,,成等比數(shù)列,且,.
(Ⅰ)求證:數(shù)列是等差數(shù)列;
(Ⅱ)求數(shù)列,的通項公式;
(Ⅲ)設(shè)=++…+,如果對任意的正整數(shù),不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黨的十九大報告指出,在全面建成小康社會的決勝階段,讓貧困地區(qū)同全國人民共同進入全面小康社會是我們黨的莊嚴(yán)承諾.在“脫真貧、真脫貧”的過程中,精準(zhǔn)扶貧助推社會公平顯得尤其重要.若某地區(qū)有100戶貧困戶,經(jīng)過一年扶貧后,為了考查該地區(qū)的“精準(zhǔn)扶貧”的成效該地區(qū)脫貧標(biāo)準(zhǔn)為“每戶人均年收入不少于4000元”,現(xiàn)從該地區(qū)隨機抽取A、B兩個村莊,再從這兩個村莊的貧困戶中隨機抽取20戶,調(diào)查每戶的現(xiàn)人均年收入,繪制如圖所示的莖葉圖單位:百元.
(1)觀察莖葉圖中的數(shù)據(jù),判斷哪個村莊扶貧成效較好?并說明理由;
(2)計劃對沒有脫貧的貧困戶進一步實行“精準(zhǔn)扶貧”,下一年的資金投入方案如下:對人均年收入不高于2000元的貧困戶,每戶每年增加扶貧資金5000元;對人均年收入高于2000元但不高于3000元的貧困戶,每戶每年增加扶貧資金3000元;對人均年收入高于3000元但不高于4000元的貧困戶,每戶每年增加扶貧資金1000元;對已經(jīng)脫貧的貧困戶不再增加扶貧資金投入.依據(jù)此方案,試估計下一年該地區(qū)共需要增加扶貧資金多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量萬件(生產(chǎn)量與銷售量相等)與促銷費用萬元滿足(其中,為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費用),產(chǎn)品的銷售價格定為元件.
(1)將該產(chǎn)品的利潤萬元表示為促銷費用萬元的函數(shù);
(2)促銷費用投入多少萬元時,該公司的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,,,分別為內(nèi)角,,的對邊,且滿.
(1)求的大。
(2)再在①,②,③這三個條件中,選出兩個使唯一確定的條件補充在下面的問題中,并解答問題.若________,________,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com