【題目】為弘揚中華民族優(yōu)秀傳統(tǒng)文化,樹立正確的價值導(dǎo)向,落實立德樹人根本任務(wù),某市組織30000名高中學(xué)生進行古典詩詞知識測試,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機抽取100名學(xué)生,記錄他們的分?jǐn)?shù),整理所得頻率分布直方圖如圖:

)規(guī)定成績不低于60分為及格,不低于85分為優(yōu)秀,試估計此次測試的及格率及優(yōu)秀率;

)試估計此次測試學(xué)生成績的中位數(shù);

)已知樣本中有的男生分?jǐn)?shù)不低于80分,且樣本中分?jǐn)?shù)不低于80分的男女生人數(shù)相等,試估計參加本次測試30000名高中生中男生和女生的人數(shù).

【答案】I,;(II76;()男生18000人,女生12000.

【解析】

(Ⅰ)根據(jù)頻率分布直方圖,求得各組數(shù)據(jù)對應(yīng)的頻率,進而求得及格率與優(yōu)秀率.

(Ⅱ)從左側(cè)開始,加至頻率為0.5,即可求得對應(yīng)底邊的數(shù)值,即為中位數(shù).

(Ⅲ)先求得不低于80分的總?cè)藬?shù),即可得出樣本中男生和女生的人數(shù).根據(jù)分層抽樣的特征,即可求得參與測試的男生和女生人數(shù).

I)由頻率分布直方圖可得各組數(shù)據(jù)對應(yīng)頻率分別為:

該校高二年級此次測試的及格率為:,

該校高二年級此次測試的優(yōu)秀率為:,

II)由頻率分布直方圖可得對應(yīng)頻率為:

估計此次測試學(xué)生成績的中位數(shù)為:

(Ⅲ)樣本中分?jǐn)?shù)不低于80分的學(xué)生共有,

因為樣本中分?jǐn)?shù)不低于80分的男女生人數(shù)相等,

所以分?jǐn)?shù)不低于80分的男生有20,

故樣本中男生60,女生40,

由分層抽樣可得該市高中男生18000,女生12000.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,其左焦點為.點的直線交橢圓于兩點,交軸的正半軸于點.

1)求橢圓的方程;

2)過點且與垂直的直線交橢圓于、兩點,若四邊形的面積為,求直線的方程;

3)設(shè),,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),對于項數(shù)為的有窮數(shù)列,令中最大值,稱數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7. 考查正整數(shù)1,2,…,的所有排列,將每種排列都視為一個有窮數(shù)列.

1)若,寫出創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列;

2)是否存在數(shù)列的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的的創(chuàng)新數(shù)列;若不存在,請說明理由.

3)是否存在數(shù)列,使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出滿足所有條件的數(shù)列的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點滿足方程.

1)求點M的軌跡C的方程;

2)作曲線C關(guān)于軸對稱的曲線,記為,在曲線C上任取一點,過點P作曲線C的切線l,若切線l與曲線交于A,B兩點,過點AB分別作曲線的切線,證明的交點必在曲線C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,為兩非零有理數(shù)列(即對任意的,,均為有理數(shù)),為一個無理數(shù)列(即對任意的,為無理數(shù)).

(1)已知,并且對任意的恒成立,試求的通項公式;

(2)若為有理數(shù)列,試證明:對任意的恒成立的充要條件為

(3)已知,,試計算

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項數(shù)列,滿足:對任意正整數(shù),都有,,成等差數(shù)列,,,成等比數(shù)列,且,

)求證:數(shù)列是等差數(shù)列;

)求數(shù)列,的通項公式;

)設(shè)=++…+,如果對任意的正整數(shù),不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黨的十九大報告指出,在全面建成小康社會的決勝階段,讓貧困地區(qū)同全國人民共同進入全面小康社會是我們黨的莊嚴(yán)承諾.脫真貧、真脫貧的過程中,精準(zhǔn)扶貧助推社會公平顯得尤其重要.若某地區(qū)有100戶貧困戶,經(jīng)過一年扶貧后,為了考查該地區(qū)的精準(zhǔn)扶貧的成效該地區(qū)脫貧標(biāo)準(zhǔn)為每戶人均年收入不少于4000,現(xiàn)從該地區(qū)隨機抽取AB兩個村莊,再從這兩個村莊的貧困戶中隨機抽取20戶,調(diào)查每戶的現(xiàn)人均年收入,繪制如圖所示的莖葉圖單位:百元.

1)觀察莖葉圖中的數(shù)據(jù),判斷哪個村莊扶貧成效較好?并說明理由;

2)計劃對沒有脫貧的貧困戶進一步實行精準(zhǔn)扶貧,下一年的資金投入方案如下:對人均年收入不高于2000元的貧困戶,每戶每年增加扶貧資金5000元;對人均年收入高于2000元但不高于3000元的貧困戶,每戶每年增加扶貧資金3000元;對人均年收入高于3000元但不高于4000元的貧困戶,每戶每年增加扶貧資金1000元;對已經(jīng)脫貧的貧困戶不再增加扶貧資金投入.依據(jù)此方案,試估計下一年該地區(qū)共需要增加扶貧資金多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量萬件(生產(chǎn)量與銷售量相等)與促銷費用萬元滿足(其中為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費用),產(chǎn)品的銷售價格定為件.

1)將該產(chǎn)品的利潤萬元表示為促銷費用萬元的函數(shù);

2)促銷費用投入多少萬元時,該公司的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,分別為內(nèi)角,的對邊,且滿.

1)求的大。

2)再在①,②,③這三個條件中,選出兩個使唯一確定的條件補充在下面的問題中,并解答問題.________,________,求的面積.

查看答案和解析>>

同步練習(xí)冊答案