【題目】現(xiàn)有年齡在25到55歲的一群人身體上的某項(xiàng)數(shù)據(jù),其頻率分布直方圖如下.(注:每組包括左端點(diǎn),不包括右端點(diǎn))
(1)請(qǐng)補(bǔ)全頻率分布直方圖;
(2)估計(jì)年齡的平均數(shù);(精確到小數(shù)點(diǎn)后一位數(shù)字)
(3)若50到55歲的人數(shù)是50,現(xiàn)在想要從25到35歲的人群中用分層抽樣的方法抽取30人,那么25到30歲這一組人中應(yīng)該抽取多少人?
【答案】(1)見解析;(2)36.8;(3)9人
【解析】
(1)由所有組的頻率之和為1可得第二組頻率,根據(jù)組寬算出組高即可畫出;
(2)取各個(gè)矩形中間的值為這組的均值計(jì)算;
(3)由50到55歲的人數(shù)是50,計(jì)算出總?cè)藬?shù)有1000人,再算出25到35歲之間有多少人,根據(jù)比例計(jì)算即可.
解:(1)第二組的頻率為:
所以直方圖的高為,補(bǔ)全的頻率分布直方圖如圖
(2)第一組的頻率為,第二組的頻率為,第三組的頻率為,第四組的頻率為,第五組的頻率為,第六組的頻率為,而各組的中點(diǎn)值分別為、、、、、,故可估計(jì)年齡的平均數(shù)為:
(3)50到55歲這一組的頻率為,人數(shù)是50,故得總?cè)藬?shù)是
從而得25到30歲這一組的人數(shù)是,
30到35歲這一組的人數(shù)是
那么25到30歲這一組人中應(yīng)該抽取(人)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過圓上的點(diǎn)作圓的切線,過點(diǎn)作切線的垂線,若直線過拋物線的焦點(diǎn).
(1)求直線與拋物線的方程;
(2)若直線與拋物線交于點(diǎn),點(diǎn)在拋物線的準(zhǔn)線上,且,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,其左焦點(diǎn)與拋物線的焦點(diǎn)重合.
(1)求橢圓的方程;
(2)過動(dòng)點(diǎn)的直線交軸于點(diǎn),交橢圓于點(diǎn),在第一象限,,過點(diǎn)做軸的垂線交橢圓于點(diǎn),連接并延長(zhǎng)交橢圓于另一點(diǎn).設(shè)直線的斜率分別為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是上的奇函數(shù).
(1)求的值;
(2)證明在上單調(diào)遞減;
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.
(1).證明:平面PAB⊥平面PAD;
(2).若PA=PD=AB=DC, ∠APD =90°,且四棱錐PABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連結(jié)PE并延長(zhǎng)交AB于點(diǎn)G.
(Ⅰ)證明:G是AB的中點(diǎn);
(Ⅱ)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說明作法及理由),并求四面體PDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域?yàn)?/span>D={x|x≠0},且滿足對(duì)于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判斷f(x)的奇偶性并證明你的結(jié)論;
(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知空間幾何體中, 與均為邊長(zhǎng)為2的等邊三角形, 為腰長(zhǎng)為3的等腰三角形,平面平面,平面平面.
(1)試在平面內(nèi)作一條直線,使得直線上任意一點(diǎn)與的連線均與平面平行,并給出詳細(xì)證明;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位對(duì)一崗位面向社會(huì)公開招聘,若甲筆試成績(jī)與面試成績(jī)至少有一項(xiàng)比乙高,則稱甲不亞于乙.在18位應(yīng)聘者中,如果某應(yīng)聘者不亞于其他17人,則稱其為“優(yōu)秀人才”.那么這18人中“優(yōu)秀人才”數(shù)最多為( )
A. 1 B. 2 C. 9 D. 18
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com