【題目】已知.
(1)若,求在上的最小值;
(2)求的極值點(diǎn);
(3)若在內(nèi)有兩個(gè)零點(diǎn),求的取值范圍.
【答案】(1)最小值為;(2)為極大值點(diǎn),無極小值點(diǎn);(3)
【解析】
(1)對(duì)函數(shù)求導(dǎo)數(shù),令,可知在上是減函數(shù),從而求得最小值;(2)函數(shù)的定義域?yàn)?/span>,對(duì)函數(shù)求導(dǎo)數(shù),令,得到兩個(gè)解,分析可得的單調(diào)區(qū)間,從而得到極值點(diǎn);(3)由,得,令,對(duì)求導(dǎo),研究的單調(diào)性,求出它的極小值和端點(diǎn)值,從而可求得參數(shù)a的取值范圍.
(1),因?yàn)?/span>,所以,所以在上是減函數(shù),
所以最小值為.
(2)函數(shù)的定義域?yàn)?/span>,,
令得.
因?yàn)?/span>,所以當(dāng)時(shí),,當(dāng)時(shí),
所以在單調(diào)遞增,在單調(diào)遞減,所以為極大值點(diǎn),無極小值點(diǎn).
(3)由,得,令,,令,當(dāng)時(shí),,
當(dāng)時(shí),,
所以g(x)在上是減函數(shù),在上是增函數(shù),
,,,
所以,則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象在點(diǎn)處的切線為,若函數(shù)滿足(其中為函數(shù)的定義域,當(dāng)時(shí),恒成立,則稱為函數(shù)的“轉(zhuǎn)折點(diǎn)”,已知函數(shù)在區(qū)間上存在一個(gè)“轉(zhuǎn)折點(diǎn)”,則的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】又到了品嘗小龍蝦的季節(jié),小龍蝦近幾年來被稱作是“國民宵夜”風(fēng)靡國內(nèi)外.在巨大的需求市場下,湖北的小龍蝦產(chǎn)量占據(jù)了全國的半壁江山,湖北某地區(qū)近幾年的小龍蝦產(chǎn)量統(tǒng)計(jì)如下表:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
年產(chǎn)量(萬噸) | 6.6 | 6.9 | 7.4 | 7.7 | 8 | 8.4 |
(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(2)根據(jù)線性回歸方程預(yù)測2019年該地區(qū)農(nóng)產(chǎn)品的年產(chǎn)量.
附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.(參考數(shù)據(jù):,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由于近幾年我國多地區(qū)的霧霾天氣,引起口罩熱銷,某廠家擬在2017年舉行促銷活動(dòng),經(jīng)調(diào)查該批口罩銷售量萬件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用萬元滿足(其中,為常數(shù)).已知生產(chǎn)該批口罩還要投入成本萬元(不包含促銷費(fèi)用),口罩的銷售價(jià)格定為元/件.
(1)將該批口罩的利潤萬元表示為促銷費(fèi)用萬元的函數(shù);
(2)當(dāng)促銷費(fèi)用投入多少萬元時(shí),該廠家的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線方程為y2=-4x,直線l的方程為2x+y-4=0,在拋物線上有一動(dòng)點(diǎn)A,點(diǎn)A到y(tǒng)軸的距離為m,到直線l的距離為n,則m+n的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司推廣線下分店,計(jì)劃在S市的A區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設(shè)分店的個(gè)數(shù),y表示這個(gè)x個(gè)分店的年收入之和.
(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程
(2)假設(shè)該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間的關(guān)系為,請(qǐng)結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開設(shè)多少個(gè)分店時(shí),才能使A區(qū)平均每個(gè)分店的年利潤最大?
(參考公式:,其中,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高一(1)班參加校生物競賽學(xué)生的成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:
(1)求高一(1)班參加校生物競賽的人數(shù)及分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間的矩形的高;
(2)若要從分?jǐn)?shù)在[80,100]之間的學(xué)生中任選2人進(jìn)行某項(xiàng)研究,求至少有1人分?jǐn)?shù)在[90,100]之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線與拋物線交于,兩點(diǎn),與橢圓交于,兩點(diǎn),直線,,,(為坐標(biāo)原點(diǎn))的斜率分別為,,,,若.
(1)是否存在實(shí)數(shù),滿足,并說明理由;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是( )
A.兩圓錐曲線的離心率分別為,則“”是“兩圓錐曲線均為橢圓”的充要條件.
B.已知為圓內(nèi)異于圓心的一點(diǎn),則直線與該圓相交.
C.設(shè)是實(shí)數(shù),若方程表示雙曲線,則.
D.命題的否定是.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com