已知等差數(shù)列和公比為的等比數(shù)列滿足:,,.
(Ⅰ)求數(shù)列,的通項公式;
(Ⅱ)若數(shù)列的前項和為,且對任意均有成立,試求實數(shù)的取值范圍.
(Ⅰ) ,;(Ⅱ) .
解析試題分析:(Ⅰ)設(shè)等差數(shù)列的公差為,根據(jù)題中條件,可以列出關(guān)于與的方程組;(Ⅱ)典型的錯位相減法求出,不等式變成,然后利用右邊數(shù)列的單調(diào)性即可.
試題解析:(Ⅰ)設(shè)等差數(shù)列的公差為,根據(jù)題意,得,解得(舍去),或,
所以數(shù)列,的通項公式分別為:,. 5分
(Ⅱ) ①
所以 ②
①-②,得,
∴; 9分
所以,化簡并整理,得. 10分
令,則.
∵,∴,∴對,,∴,故. 13分.
考點:等差數(shù)列與等比數(shù)列的概念與通項公式、數(shù)列求和、數(shù)列的單調(diào)性.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項均為正數(shù)的數(shù)列{}滿足--2=0,n∈N﹡,且是a2,a4的等差中項.
(1)求數(shù)列{}的通項公式;
(2)若=,=b1+b2+…+,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)同時滿足:①不等式 的解集有且只有一個元素;②在定義域內(nèi)存在,使得不等式成立 設(shè)數(shù)列的前項和為
(1)求數(shù)列的通項公式;
(2)設(shè)各項均不為零的數(shù)列中,所有滿足的正整數(shù)的個數(shù)稱為這個數(shù)列的變號數(shù),令(為正整數(shù)),求數(shù)列的變號數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前項和,且,.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)的圖象經(jīng)過坐標(biāo)原點,其導(dǎo)函數(shù)為,數(shù)列的前項和為,點均在函數(shù)的圖像上.
(1)求的解析式;
(2)求數(shù)列的通項公式;
(3)設(shè),是數(shù)列的前n項和,求使得對所有都成立的最小正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列滿足,且.
(1)求
(2)是否存在實數(shù)t,使得,且{}為等差數(shù)列?若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于給定數(shù)列,如果存在實常數(shù)使得對于任意都成立,我們稱數(shù)列是“數(shù)列”.
(Ⅰ)若,,,數(shù)列、是否為“數(shù)列”?若是,指出它對應(yīng)的實常數(shù),若不是,請說明理由;
(Ⅱ)證明:若數(shù)列是“數(shù)列”,則數(shù)列也是“數(shù)列”;
(Ⅲ)若數(shù)列滿足,,為常數(shù).求數(shù)列前項的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列{}中,,且,
(1)求的值;
(2)猜測數(shù)列{}的通項公式,并用數(shù)學(xué)歸納法證明。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com