【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|
(1)當(dāng)a=2時(shí),解不等式f(x)≥4.
(2)若不等式f(x)≥2a恒成立,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:由f(x)≥4得, ,或 ,或

解得: ,故原不等式的解集為


(2)解:由不等式的性質(zhì)得:f(x)≥|a﹣1|,

要使不等式f(x)≥2a恒成立,則|a﹣1|≥2a,

解得:a≤﹣1或 ,

所以實(shí)數(shù)a的取值范圍為


【解析】(1)把要解的不等式等價(jià)轉(zhuǎn)化為與之等價(jià)的三個(gè)不等式組,求出每個(gè)不等式組的解集,再取并集,即得所求.(2)由不等式的性質(zhì)得:f(x)≥|a﹣1|,要使不等式f(x)≥2a恒成立,則|a﹣1|≥2a,由此求得實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】關(guān)于本題考查的絕對(duì)值不等式的解法,需要了解含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集為M.
(1)求M;
(2)當(dāng)a,b∈M時(shí),證明:2|a+b|<|4+ab|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)方體ABCD﹣A1B1C1D1中AB=AA1=2,AD=1,E為CC1的中點(diǎn),則異面直線BC1與AE所成角的余弦值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公差為0的等差數(shù)列{an}滿足a1=1,且a1 , a3﹣2,a9成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{ }的前n項(xiàng)和為Sn , 并求使得Sn + 成立的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)若曲線處的切線與直線垂直,求的值;

(Ⅱ)當(dāng)時(shí),求證:存在實(shí)數(shù)使.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=2n+1,(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)an;
(2)設(shè)bn=nan+1 , 求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè)cn= ,求證:c1+c2+…+cn .(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex , 對(duì)于實(shí)數(shù)m、n、p有f(m+n)=f(m)+f(n),f(m+n+p)=f(m)+f(n)+f(p),則p的最大值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , a1=﹣ ,Sn+ =an﹣2(n≥2,n∈N)
(1)求S2 , S3 , S4的值;
(2)猜想Sn的表達(dá)式;并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三棱柱的所有棱長(zhǎng)均為2, , 分別為的中點(diǎn).

(1)證明: 平面;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案