【題目】已知U=R,M={x|﹣l≤x≤2},N={x|x≤3},則(UM)∩N=( )
A.{x|2≤x≤3}
B.{x|2<x≤3}
C.{x|x≤﹣1,或2≤x≤3}
D.{x|x<﹣1,或2<x≤3}
【答案】D
【解析】解:∵M(jìn)={x|﹣l≤x≤2}, ∴CuM={x|x<﹣1或x>2}
∵N={x|x≤3},
∴(CuM)∩N={x|x<﹣1,或2<x≤3}
故選D.
【考點(diǎn)精析】掌握集合的交集運(yùn)算和集合的補(bǔ)集運(yùn)算是解答本題的根本,需要知道交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立;對(duì)于全集U的一個(gè)子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對(duì)于全集U的補(bǔ)集,簡(jiǎn)稱為集合A的補(bǔ)集,記作:CUA即:CUA={x|x∈U且x∈A};補(bǔ)集的概念必須要有全集的限制.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以坐標(biāo)原點(diǎn)O為圓心的單位圓與x軸正半軸相交于點(diǎn)A,點(diǎn)B,P在單位圓上,且B(﹣ , ),∠AOB=α.
(1)求 的值;
(2)若四邊形OAQP是平行四邊形,
(i)當(dāng)P在單位圓上運(yùn)動(dòng)時(shí),求點(diǎn)O的軌跡方程;
(ii)設(shè)∠POA=θ(0≤θ≤2π),點(diǎn)Q(m,n),且f(θ)=m+ n.求關(guān)于θ的函數(shù)f(θ)的解析式,并求其單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD為正方形,PA=AB,該四棱錐被一平面截去一部分后,剩余部分的三視圖如圖,則剩余部分體積與原四棱錐體積的比值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (θ為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcosθ=﹣2.
(Ⅰ)求C1和C2在直角坐標(biāo)系下的普通方程;
(Ⅱ)已知直線l:y=x和曲線C1交于M,N兩點(diǎn),求弦MN中點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年1月1日起全國(guó)統(tǒng)一實(shí)施全面的兩孩政策.為了解適齡民眾對(duì)放開(kāi)生育二胎政策的態(tài)度,某市選取70后80后作為調(diào)查對(duì)象,隨機(jī)調(diào)查了100人并對(duì)調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì),70后不打算生二胎的占全部調(diào)查人數(shù)的15%,80后打算生二胎的占全部被調(diào)查人數(shù)的45%,100人中共有75人打算生二胎.
(1)根據(jù)調(diào)查數(shù)據(jù),判斷是否有90%以上把握認(rèn)為“生二胎與年齡有關(guān)”,并說(shuō)明理由;
(2)以這100人的樣本數(shù)據(jù)估計(jì)該市的總體數(shù)據(jù),且以頻率估計(jì)概率,若從該市70后公民中(人數(shù)很多)隨機(jī)抽取3位,記其中打算生二胎的人數(shù)為X,求隨機(jī)變量X的分布列,數(shù)學(xué)期望E(X)和方差D(X). 參考公式:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
( ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】艾薩克牛頓(1643年1月4日﹣1727年3月31日)英國(guó)皇家學(xué)會(huì)會(huì)長(zhǎng),英國(guó)著名物理學(xué)家,同時(shí)在數(shù)學(xué)上也有許多杰出貢獻(xiàn),牛頓用“作切線”的方法求函數(shù)f(x)零點(diǎn)時(shí)給出一個(gè)數(shù)列{xn}:滿足 ,我們把該數(shù)列稱為牛頓數(shù)列.如果函數(shù)f(x)=ax2+bx+c(a>0)有兩個(gè)零點(diǎn)1,2,數(shù)列{xn}為牛頓數(shù)列,設(shè) ,已知a1=2,xn>2,則{an}的通項(xiàng)公式an= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是( )
A.若p:?x∈R,x2﹣x+1≥0,則¬p:?x∈R,x2﹣x+1<0
B.“ ”是“θ=30°或θ=150°”的充分不必要條件
C.命題“若a=0,則ab=0”的否命題是“若a≠0,則ab≠0”
D.已知p:?x∈R,cosx=1,q:?x∈R,x2﹣x+2>0,則“p∧(¬q)”為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐S﹣ABCD中,AB∥CD,BC⊥CD,側(cè)面SAB為等邊三角形,AB=BC=2,CD=SD=1.
(Ⅰ)證明:SD⊥平面SAB;
(Ⅱ)求AB與平面SBC所成的角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=1,E,F(xiàn)分別是CC1 , BC的中點(diǎn),AE⊥A1B1 , D為棱A1B1上的點(diǎn).
(1)證明:AB⊥AC;
(2)證明:DF⊥AE;
(3)是否存在一點(diǎn)D,使得平面DEF與平面ABC所成銳二面角的余弦值為 ?若存在,說(shuō)明點(diǎn)D的位置,若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com