【題目】設常數(shù),函數(shù).

1)令時,求的最小值,并比較的最小值與零的大;

2)求證:上是增函數(shù);

3)求證:當時,恒有.

【答案】1)最小值為,最小值大于零.(2)證明見解析.(3)證明見解析

【解析】

1)對函數(shù)進行求導,確定函數(shù)的解析式,再對函數(shù)求導,列表判斷出該函數(shù)的單調(diào)性以及極值,最后確定函數(shù)的最小值,再判斷的最小值與零的大小即可;

2)利用(1)中的結(jié)論,可以判斷出函數(shù)的正負性,進而能證明出的單調(diào)性;

3)利用(2)中的結(jié)論進行證明即可.

1)因為,

所以.

所以,

所以,令,得.

列表如下:

2

0

極小值

所以處取得極小值

的最小值為,

因為,所以,

,所以的最小值大于零.

2)由(1)知,的最小值為正數(shù),

所以對一切,恒有.

從而當時,恒有,故上是增函數(shù).

3)由(2)知上是增函數(shù),

所以當時,.

所以,即,

所以

故當時,恒有.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】雅山中學采取分層抽樣的方法從應屆高三學生中按照性別抽出20名學生作為樣本,其選報文科理科的情況如下表所示.




文科

2

5

理科

10

3

)若在該樣本中從報考文科的學生中隨機地選出3人召開座談會,試求3人中既有男生也有女生的概率;

)用假設檢驗的方法分析有多大的把握認為雅山中學的高三學生選報文理科與性別有關?

參考公式和數(shù)據(jù):


0.15

0.10

0.05

0.025

0.010

0.005

0.001


2.07

2.71

3.84

5.02

6.64

7.88

10.83

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】證明:存在無窮多個棱長為正整數(shù)的長方體,其體積恰等于對角線長的平方,且該長方體的每一個表面總可以割并成兩個整邊正方形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求直線的普通方程和曲線的直角坐標方程;

2)若射線)與直線和曲線分別交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)①若直線的圖象相切, 求實數(shù)的值;

②令函數(shù),求函數(shù)在區(qū)間上的最大值.

(2)已知不等式對任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖是一個的方格(其中心的方格線已被劃去).一只青蛙停在格處,從某一時刻起,青蛙每隔一秒鐘就跳到與它所在方格有公共邊的另一方格內(nèi),直至跳到格才停下..若青蛙經(jīng)過每一個方格不超過一次,則青蛙的跳法總數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高考改革后,學生除了語數(shù)外三門必選外,可在A類科目:物理、化學、生物和B類科目:政治、地理、歷史共6個科目中任選3門.

1)若小明同學已經(jīng)確定選了物理,現(xiàn)在他還要從剩余的5科中再選2科,則他在歷史與地理兩科中至少選一科的概率?

2)求小明同學選A類科目數(shù)X的分布列、數(shù)學期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前n項和為,已知,,,則數(shù)列的前2n項和為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在邊長為的菱形中,,現(xiàn)沿對角線翻折到的位置得到四面體,如圖所示.已知.

1)求證:平面平面;

2)若是線段上的點,且,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案