【題目】已知點(diǎn)A(0,﹣1)是拋物線(xiàn)C:x2=2py(p>0)準(zhǔn)線(xiàn)上的一點(diǎn),點(diǎn)F是拋物線(xiàn)C的焦點(diǎn),點(diǎn)P在拋物線(xiàn)C上且滿(mǎn)足|PF|=m|PA|,當(dāng)m取最小值時(shí),點(diǎn)P恰好在以原點(diǎn)為中心,F(xiàn)為焦點(diǎn)的雙曲線(xiàn)上,則此雙曲線(xiàn)的離心率為( )
A.
B.
C. +1
D. +1
【答案】C
【解析】解:點(diǎn)A(0,﹣1)是拋物線(xiàn)C:x2=2py(p>0)準(zhǔn)線(xiàn)上的一點(diǎn),可得p=2, 拋物線(xiàn)的標(biāo)準(zhǔn)方程為x2=4y,
則拋物線(xiàn)的焦點(diǎn)為F(0,1),準(zhǔn)線(xiàn)方程為y=﹣1,
過(guò)P作準(zhǔn)線(xiàn)的垂線(xiàn),垂足為N,
則由拋物線(xiàn)的定義可得|PN|=|PF|,
∵|PF|=m|PA|,∴|PN|=m|PA|,則 =m,
設(shè)PA的傾斜角為α,則sinα=m,
當(dāng)m取得最小值時(shí),sinα最小,此時(shí)直線(xiàn)PA與拋物線(xiàn)相切,
設(shè)直線(xiàn)PA的方程為y=kx﹣1,代入x2=4y,
可得x2=4(kx﹣1),
即x2﹣4kx+4=0,
∴△=16k2﹣16=0,∴k=±1,
∴P(2,1),
∴雙曲線(xiàn)的實(shí)軸長(zhǎng)為|PA|﹣|PF|=2( ﹣1),
∴雙曲線(xiàn)的離心率為 = +1.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)?倓(wù)辦公室用1000萬(wàn)元從政府購(gòu)得一塊廉價(jià)土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高萬(wàn)元,已知建筑第5層樓房時(shí),每平方米建筑費(fèi)用為萬(wàn)元.
若學(xué)生宿舍建筑為x層樓時(shí),該樓房綜合費(fèi)用為y萬(wàn)元,綜合費(fèi)用是建筑費(fèi)用與購(gòu)地費(fèi)用之和,寫(xiě)出的表達(dá)式;
為了使該樓房每平方米的平均綜合費(fèi)用最低,學(xué)校應(yīng)把樓層建成幾層?此時(shí)平均綜合費(fèi)用為每平方米多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}中,a3=9,a5=17,記數(shù)列 的前n項(xiàng)和為Sn , 若 ,對(duì)任意的n∈N*成立,則整數(shù)m的最小值為( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)f(x)的圖象向右平移個(gè)單位,再將所得圖象的橫坐標(biāo)縮短到原來(lái)的一半,縱坐標(biāo)不變,得到新的函數(shù)y=g(x),當(dāng)時(shí),求g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某公司舉行的年終慶典活動(dòng)中,主持人利用隨機(jī)抽獎(jiǎng)軟件進(jìn)行抽獎(jiǎng):由電腦隨機(jī)生成一張如圖所示的33表格,其中1格設(shè)獎(jiǎng)300元,4格各設(shè)獎(jiǎng)200元,其余4格各設(shè)獎(jiǎng)100元,點(diǎn)擊某一格即顯示相應(yīng)金額.某人在一張表中隨機(jī)不重復(fù)地點(diǎn)擊3格,記中獎(jiǎng)的總金額為X元.
(1)求概率;
(2)求的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若= + ,則+的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了了解高中生的藝術(shù)素養(yǎng),從學(xué)校隨機(jī)選取男,女同學(xué)各50人進(jìn)行研究,對(duì)這100名學(xué)生在音樂(lè)、美術(shù)、戲劇、舞蹈等多個(gè)藝術(shù)項(xiàng)目進(jìn)行多方位的素質(zhì)測(cè)評(píng),并把調(diào)查結(jié)果轉(zhuǎn)化為個(gè)人的素養(yǎng)指標(biāo)和,制成下圖,其中“*”表示男同學(xué),“+”表示女同學(xué).
若,則認(rèn)定該同學(xué)為“初級(jí)水平”,若,則認(rèn)定該同學(xué)為“中級(jí)水平”,若,則認(rèn)定該同學(xué)為“高級(jí)水平”;若,則認(rèn)定該同學(xué)為“具備一定藝術(shù)發(fā)展?jié)撡|(zhì)”,否則為“不具備明顯藝術(shù)發(fā)展?jié)撡|(zhì)”.
(I)從50名女同學(xué)的中隨機(jī)選出一名,求該同學(xué)為“初級(jí)水平”的概率;
(Ⅱ)從男同學(xué)所有“不具備明顯藝術(shù)發(fā)展?jié)撡|(zhì)的中級(jí)或高級(jí)水平”中任選2名,求選出的2名均為“高級(jí)水平”的概率;
(Ⅲ)試比較這100名同學(xué)中,男、女生指標(biāo)的方差的大小(只需寫(xiě)出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】商丘市大型購(gòu)物中心——萬(wàn)達(dá)廣場(chǎng)將于2018年7月6日全面開(kāi)業(yè),目前正處于試營(yíng)業(yè)階段,某按摩椅經(jīng)銷(xiāo)商為調(diào)查顧客體驗(yàn)按摩椅的時(shí)間,隨機(jī)調(diào)查了50名顧客,體驗(yàn)時(shí)間(單位:分鐘)落在各個(gè)小組的頻數(shù)分布如下表:
體驗(yàn) 時(shí)間 | |||||||
頻數(shù) |
(1)求這名顧客體驗(yàn)時(shí)間的樣本平均數(shù),中位數(shù),眾數(shù);
(2)已知體驗(yàn)時(shí)間為的顧客中有2名男性,體驗(yàn)時(shí)間為的顧客中有3名男性,為進(jìn)一步了解顧客對(duì)按摩椅的評(píng)價(jià),現(xiàn)隨機(jī)從體驗(yàn)時(shí)間為和的顧客中各抽一人進(jìn)行采訪,求恰抽到一名男性的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為實(shí)數(shù))的圖像在點(diǎn)處的切線(xiàn)方程為.
(1)求實(shí)數(shù)的值及函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),證明時(shí), .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com