【題目】如圖,在四棱錐中,四邊形是邊長為2的正方形,,為的中點(diǎn),點(diǎn)在上,平面,在的延長線上,且.
(1)證明:平面.
(2)過點(diǎn)作的平行線,與直線相交于點(diǎn),點(diǎn)為的中點(diǎn),求到平面的距離.
【答案】(1)見解析;(2)
【解析】
(1)取的中點(diǎn)為,連接,過作交于,連接,通過證明四邊形是平行四邊形,得,證得線面平行;
(2)考慮三棱錐的體積,利用等體積法求出到平面的距離為,到平面的距離是到平面的距離的一半,即可得解.
(1)證明:記的中點(diǎn)為,連接,過作交于,連接,
則,且.
因?yàn)?/span>平面,所以.
在中,,,易求,.
又,則.
因?yàn)?/span>,所以.
因?yàn)?/span>,且,所以四邊形是平行四邊形,
所以,又平面,平面,
所以平面.
(2)因?yàn)?/span>平面,所以,而是正方形,所以.
因?yàn)?/span>與顯然是相交直線,所以平面,
所以平面平面.
記的中點(diǎn)為,連接,,則平面,且.
因?yàn)辄c(diǎn)為的中點(diǎn),所以,,,
在中,,,,所以.
,所以,
而三棱錐的體積.
記到平面的距離為,
則,所以.
因?yàn)?/span>到平面的距離是到平面的距離的一半,
所以到平面的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知某區(qū)甲、乙、丙三所學(xué)校的教師志愿者人數(shù)分別為240,160,80.為助力疫情防控,現(xiàn)采用分層抽樣的方法,從這三所學(xué)校的教師志愿者中抽取6名教師,參與“抗擊疫情·你我同行”下卡口執(zhí)勤值守專項(xiàng)行動(dòng).
(Ⅰ)求應(yīng)從甲、乙、丙三所學(xué)校的教師志愿者中分別抽取的人數(shù);
(Ⅱ)設(shè)抽出的6名教師志愿者分別記為,,,,,,現(xiàn)從中隨機(jī)抽取2名教師志愿者承擔(dān)測試體溫工作.
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)為事件“抽取的2名教師志愿者來自同一所學(xué)校”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋擲一個(gè)質(zhì)地均勻的骰子的試驗(yàn),事件A表示“小于5的偶數(shù)點(diǎn)出現(xiàn)”,事件B表示“不小于5的點(diǎn)數(shù)出現(xiàn)”,則一次試驗(yàn)中,事件A或事件B至少有一個(gè)發(fā)生的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù).
(1)若函數(shù)在點(diǎn)處的切線與直線平行,求實(shí)數(shù)的值;
(2)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)在(1)的條件下,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,直線與軸相交于點(diǎn),與曲線相交于點(diǎn),且
(1)求拋物線的方程;
(2)過拋物線的焦點(diǎn)的直線交拋物線于兩點(diǎn),過分別作拋物線的切線,兩切線交于點(diǎn),求證點(diǎn)的縱坐標(biāo)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),對(duì)于,有.
(1)證明:
(2)令,
證明 :(I)當(dāng)時(shí),
(II)當(dāng)時(shí),
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一機(jī)器可以按各種不同的速度運(yùn)轉(zhuǎn),其生產(chǎn)物件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)物件的多少隨機(jī)器運(yùn)轉(zhuǎn)速度而變化,用x表示轉(zhuǎn)速(單位:轉(zhuǎn)/秒),用y表示每小時(shí)生產(chǎn)的有缺點(diǎn)物件個(gè)數(shù),現(xiàn)觀測得到的4組觀測值為.
(1)假定y與x之間有線性相關(guān)關(guān)系,求y對(duì)x的回歸直線方程.
(2)若實(shí)際生產(chǎn)中所容許的每小時(shí)最大有缺點(diǎn)物件數(shù)為10,則機(jī)器的速度不得超過多少轉(zhuǎn)/秒?(精確到1轉(zhuǎn)/秒)
回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com