【題目】已知函數(shù).

(1)求函數(shù)在區(qū)間上的最大值 ;

(2)若是函數(shù)圖象上不同的三點,且,試判斷之間的大小關(guān)系,并證明 .

【答案】(1)見解析(2)見解析

【解析】【試題分析】求函數(shù)在某一閉區(qū)間上的最值問題,基本方法是求導(dǎo),研究導(dǎo)數(shù)的在區(qū)間上的正負,得出函數(shù)在區(qū)間上的單調(diào)性,求極值和最值,本題關(guān)鍵是含有參數(shù),所以針對的不同情況,進行討論得出最值;第二步先表示出,然后差值比較,重要的一個技巧是設(shè) ,轉(zhuǎn)化為關(guān)于 的函數(shù),利用導(dǎo)數(shù)證明不等式.

(1) ,

當(dāng)時, 時, ;

當(dāng)時, 時,

當(dāng)時,由,得,又,則有如下分類 :

①當(dāng),即時, 上是增函數(shù) ,所以;②當(dāng),即時, 上是增函數(shù) ,在上是減函數(shù) ,所以;③當(dāng),即時, 上是減函數(shù) ,所以,綜上,函數(shù)上的最大值為.

(2)

, ,

,令,所以上是增函數(shù) ,又,當(dāng)時, ,故;當(dāng)時, ,故,綜上知: .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 , ,且 ,f(x)= ﹣2λ| |(λ為常數(shù)), 求:
(1) 及| |;
(2)若f(x)的最小值是 ,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知θ為向量 的夾角,| |=2,| |=1,關(guān)于x的一元二次方程x2﹣| |x+ =0有實根.
(Ⅰ)求θ的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,求函數(shù)f(θ)=sin(2θ+ )的最值及對應(yīng)的θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin2 + sinωx﹣ (ω>0),x∈R,若f(x)在區(qū)間(π,2π)內(nèi)沒有零點,則ω的取值范圍是(
A.(0, ]
B.(0, ]∪[ ,1)
C.(0, ]
D.(0, ]∪[ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先將函數(shù)y=f(x)的圖象向左平移 個單位,然后再將所得圖象上所有點的縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的2倍,最后再將所得圖象向上平移1個單位,得到函數(shù)y=sinx的圖象.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于點M( ,2)對稱,求函數(shù)y=g(x)在[0, ]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義某種運算S=ab,運算原理如圖所示,則式子[(2tan lg ]+[lne1]的值為(
A.4
B.8
C.10
D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, 平面 , 上的動點, .

(Ⅰ)若點中點,證明:平面平面;

(Ⅱ)判斷點到平面的距離是否為定值?若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鮮花店根據(jù)以往某品種鮮花的銷售記錄,繪制出日銷售量的頻率分布直方圖,如圖所示.將日銷售量落入各組區(qū)間的頻率視為概率,且假設(shè)每天的銷售量相互獨立.

(1)求在未來的連續(xù)4天中,有2天的日銷售量低于100枝且另外2天不低于150枝的概率;

(2)用表示在未來4天里日銷售量不低于100枝的天數(shù),求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一直線l過直線l1:3x﹣y=3和直線l2:x﹣2y=2的交點P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓心在x正半軸上的半徑為 的圓C相切,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊答案