【題目】已知點(diǎn)為拋物線的焦點(diǎn),過點(diǎn)任作兩條互相垂直的直線,,分別交拋物線于,,,四點(diǎn),,分別為,的中點(diǎn).
(1)求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(2)設(shè)直線交拋物線于,兩點(diǎn),試求的最小值.
【答案】(1)證明見解析,直線過定點(diǎn)(2)的最小值為.
【解析】
(1)設(shè),,顯然直線,的斜率是存在的,設(shè)直線的方程為,代入可得,可得出的中點(diǎn)坐標(biāo)為,再根據(jù),得的中點(diǎn)坐標(biāo)為,再令得,
得出直線恒過點(diǎn),驗(yàn)證,得,,三點(diǎn)共線,從而直線過的定點(diǎn);
(2))由(1)設(shè)直線的方程為,代入可得,再設(shè),,得韋達(dá)定理,,表示出,由二次函數(shù)得出線段的最小值.
(1)設(shè),,
直線的方程為,代入可得,
則,故,
故的中點(diǎn)坐標(biāo)為.
由,得,所以的中點(diǎn)坐標(biāo)為.
令得,
此時(shí),故直線過點(diǎn),
當(dāng)時(shí),,.
所以,,,三點(diǎn)共線,
所以直線過定點(diǎn).
(2)設(shè),,直線的方程為,
代入可得,則,,
故
(當(dāng)時(shí),取等號(hào)).
故,當(dāng)及直線垂直軸時(shí),取得最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)當(dāng)時(shí),若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上兩定點(diǎn)M(0,﹣2)、N(0,2),P為一動(dòng)點(diǎn),滿足||||
(I)求動(dòng)點(diǎn)P的軌跡C的方程;
(II)若A、B是軌跡C上的兩不同動(dòng)點(diǎn),且λ.分別以A、B為切點(diǎn)作軌跡C的切線,設(shè)其交點(diǎn)Q,證明為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
甲、乙、丙三名射擊運(yùn)動(dòng)員射中目標(biāo)的概率分別為,三人各射擊一次,擊中目標(biāo)的次數(shù)記為.
(1)求的分布列及數(shù)學(xué)期望;
(2)在概率(=0,1,2,3)中, 若的值最大, 求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,,,,且為的中點(diǎn),延長交于點(diǎn),且在底內(nèi)的射影恰為的中點(diǎn),為的中點(diǎn),為上任意一點(diǎn).
(1)證明:平面平面;
(2)求平面與平面所成銳角二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司有1000名員工,其中男性員工400名,采用分層抽樣的方法隨機(jī)抽取100名員工進(jìn)行5G手機(jī)購買意向的調(diào)查,將計(jì)劃在今年購買5G手機(jī)的員工稱為“追光族",計(jì)劃在明年及明年以后才購買5G手機(jī)的員工稱為“觀望者”,調(diào)查結(jié)果發(fā)現(xiàn)抽取的這100名員工中屬于“追光族”的女性員工和男性員工各有20人.
(1)完成下列列聯(lián)表,并判斷是否有95%的把握認(rèn)為該公司員工屬于“追光族"與“性別"有關(guān);
屬于“追光族" | 屬于“觀望者" | 合計(jì) | |
女性員工 | |||
男性員工 | |||
合計(jì) | 100 |
(2)已知被抽取的這100名員工中有10名是人事部的員工,這10名中有3名屬于“追光族”.現(xiàn)從這10名中隨機(jī)抽取3名,記被抽取的3名中屬于“追光族”的人數(shù)為隨機(jī)變量X,求的分布列及數(shù)學(xué)期望.
附,其中
0.15 | 0.10 | 0.05 | 0.025 | p>0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知是曲線:上的動(dòng)點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,設(shè)點(diǎn)的軌跡為曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線,的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,點(diǎn),射線與曲線,分別相交于異于極點(diǎn)的兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,若橢圓經(jīng)過點(diǎn),且△PF1F2的面積為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)斜率為1的直線與以原點(diǎn)為圓心,半徑為的圓交于A,B兩點(diǎn),與橢圓C交于C,D兩點(diǎn),且(),當(dāng)取得最小值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),設(shè)函數(shù)有最小值,求的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com