【題目】已知橢圓: 的左、右焦點(diǎn)分別為,離心率, 為橢圓上的任意一點(diǎn)(不含長(zhǎng)軸端點(diǎn)),且面積的最大值為1.
(1)求橢圓的方程;
(2)已知直線與橢圓交于不同的兩點(diǎn),且線段的中點(diǎn)不在圓內(nèi),求的取值范圍.
【答案】(1) (2)
【解析】試題分析:
(1)要求橢圓方程,一般要找到兩個(gè)關(guān)于的方程,題中離心率是一個(gè),即, 面積最大時(shí)P點(diǎn)是橢圓短軸端點(diǎn),因此有,這樣可解出得橢圓方程;
(2)把直線方程與橢圓方程聯(lián)立方程組,消元后為一元二次方程,設(shè)交點(diǎn),利用韋達(dá)定理可得中點(diǎn)坐標(biāo)(用表示),注意直線與橢圓相交有限制條件,由中點(diǎn)在圓內(nèi)又得一條件,從而可解得的范圍.
試題解析:
(Ⅰ)由題可知,又a2=b2+c2,
∴,故------3分
所以橢圓的標(biāo)準(zhǔn)方程為
(II)聯(lián)立方程消去y 整理得:
則,解得…..8分
設(shè),則,
即AB的中點(diǎn)為
又AB的中點(diǎn)不在園內(nèi),所以,解得
綜上可知,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,B,C為銳角△ABC的三個(gè)內(nèi)角,向量 =(2﹣2sinA,cosA+sinA), =(1+sinA,cosA﹣sinA),且 ⊥ .
(1)求A的大;
(2)求y=2sin2B+cos( ﹣2B)取最大值時(shí)角B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn , 等比數(shù)列{bn}的公比為q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式
(2)當(dāng)d>1時(shí),記cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知λ∈R,函數(shù) g(x)=x2﹣4x+1+4λ,若關(guān)于x的方程f(g(x))=λ有6個(gè)解,則λ的取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: 的右焦點(diǎn)為F(1,0),且點(diǎn)(﹣1, )在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本l過(guò)點(diǎn)F,且與橢圓C交于A,B兩點(diǎn),試問(wèn)x軸上是否存在定點(diǎn)Q,使得 恒成立?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái)中, , 平面, , , , 分別為的中點(diǎn).
(1)求證: 平面;
(2)求平面與平面所成角(銳角)的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列 中,公差 , ,且 成等比數(shù)列.
(1)求數(shù)列 的通項(xiàng)公式;
(2)若 為數(shù)列 的前 項(xiàng)和,且存在 ,使得 成立,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)為上的奇函數(shù),求實(shí)數(shù)a的值;
(2)當(dāng)時(shí),函數(shù)在為減函數(shù),求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)(),使得 在閉區(qū)間上的最大值為2,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com