【題目】如圖,平行四邊形形狀的紙片是由六個(gè)邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的表面積為__________;若該六面體內(nèi)有一小球,則小球的最大體積為___________.
【答案】
【解析】
(1)計(jì)算每個(gè)面的面積再乘以6,即可得到答案;
(2)由圖形的對稱性得,小球的體積要達(dá)到最大,即球與六個(gè)面都相切時(shí),求出球的半徑,再代入球的體積公式可得答案.
(1)因?yàn)?/span>,所以該六面體的表面積為.
(2)由圖形的對稱性得,小球的體積要達(dá)到最大,即球與六個(gè)面都相切時(shí),
每個(gè)三角形面積是,六面體體積是正四面體的2倍,所以六面體體積是.
由于圖像的對稱性,內(nèi)部的小球要是體積最大,就是球要和六個(gè)面相切,連接球心和五個(gè)頂點(diǎn),把六面體分成了六個(gè)三棱錐,設(shè)球的半徑為,
所以,
所以球的體積.
故答案為: ;.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , ,
⑴ 若有零點(diǎn),求 m 的取值范圍;
⑵ 確定 m 的取值范圍,使得有兩個(gè)相異實(shí)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】江心洲有一塊如圖所示的江邊,,為岸邊,岸邊形成角,現(xiàn)擬在此江邊用圍網(wǎng)建一個(gè)江水養(yǎng)殖場,有兩個(gè)方案:方案l:在岸邊上取兩點(diǎn),用長度為的圍網(wǎng)依托岸邊線圍成三角形(,兩邊為圍網(wǎng));方案2:在岸邊,上分別取點(diǎn),用長度為的圍網(wǎng)依托岸邊圍成三角形.請分別計(jì)算,面積的最大值,并比較哪個(gè)方案好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=|x﹣m|+|x|,m∈N*,存在實(shí)數(shù)x使f(x)<2成立.
(1)求實(shí)數(shù)m的值;
(2)若α≥1,β≥1,f(α)+f(β)=4,求證:≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,左頂點(diǎn)為,左焦點(diǎn)為,點(diǎn)在橢圓上,直線與橢圓交于, 兩點(diǎn),直線, 分別與軸交于點(diǎn), .
(Ⅰ)求橢圓的方程;
(Ⅱ)以為直徑的圓是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面ABCD,,,,點(diǎn)E在BC上,.
(1)求證:平面平面PAC;
(2)若直線PE與平面PAC所成的角的正弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(a>b>0)的左.右頂點(diǎn)分別為A,B,離心率為,點(diǎn)P為橢圓上一點(diǎn).
(1) 求橢圓C的標(biāo)準(zhǔn)方程;
(2) 如圖,過點(diǎn)C(0,1)且斜率大于1的直線l與橢圓交于M,N兩點(diǎn),記直線AM的斜率為k1,直線BN的斜率為k2,若k1=2k2,求直線l斜率的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com