【題目】已知不等式|x+1|>|2﹣x|+1的解集為M,且a,b,c∈M.
(1)比較|a﹣b|與|1﹣ab|的大小,并說明理由;
(2)若,求a2+b2+c2的最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,滿足:對于任意正整數(shù)n,當(dāng)n≥2時,.
(1)若,求的值;
(2)若,,且數(shù)列的各項均為正數(shù).
① 求數(shù)列的通項公式;
② 是否存在,且,使得為數(shù)列中的項?若存在,求出所有滿足條件的的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 則: (1)曲線的斜率為的切線方程為__________;
(2)設(shè),記在區(qū)間上的最大值為.當(dāng)最小時,的值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,側(cè)面PAD垂直底面ABCD,∠PAD=∠ABC,設(shè).
(1)求證:AE垂直BC;
(2)若直線AB∥平面PCD,且DC=2AB,求證:直線PD∥平面ACE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為提高課堂教學(xué)效果,最近立項了市級課題《高效課堂教學(xué)模式及其運(yùn)用》,其中王老師是該課題的主研人之一,為獲得第一手?jǐn)?shù)據(jù),她分別在甲、乙兩個平行班采用“傳統(tǒng)教學(xué)”和“高效課堂”兩種不同的教學(xué)模式進(jìn)行教學(xué)實驗.為了解教改實效,期中考試后,分別從兩個班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,作出如圖所示的莖葉圖,成績大于70分為“成績優(yōu)良”.
(1)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計 | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計 |
(2)從甲、乙兩班40個樣本中,成績在60分以下(不含60分)的學(xué)生中任意選取2人,記來自甲班的人數(shù)為,求的分布列與數(shù)學(xué)期望.
附:(其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,,四邊形為矩形,平面平面,.
(1)證明:平面;
(2)設(shè)點在線段上運(yùn)動,平面與平面所成銳二面角為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣,為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲2000個點,己知恰有800個點落在陰影部分,據(jù)此可估計陰影部分的面積是
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中是常數(shù)).
(Ⅰ)求過點與曲線相切的直線方程;
(Ⅱ)是否存在的實數(shù),使得只有唯一的正數(shù),當(dāng)時不等式恒成立,若這樣的實數(shù)存在,試求,的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com