【題目】下邊的折線圖給出的是甲、乙兩只股票在某年中每月的收盤價格,已知股票甲的極差是6.88元,標準差為2.04元;股票乙的極差為27.47元,標準差為9.63元,根據(jù)這兩只股票在這一年中的波動程度,給出下列結(jié)論:①股票甲在這一年中波動相對較小,表現(xiàn)的更加穩(wěn)定;②購買股票乙風險高但可能獲得高回報;③股票甲的走勢相對平穩(wěn),股票乙的股價波動較大;④兩只般票在全年都處于上升趨勢.其中正確結(jié)論的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

通過標準差的比較,得出兩只股票的穩(wěn)定性,通過極差的比較,得出風險和回報,再根據(jù)折線圖得出股票的上升和下跌趨勢,可分析出答案.

由題可知,甲的標準差為2.04元,乙的標準差為9.63元,可知股票甲在這一年中波動相對較小,表現(xiàn)的更加穩(wěn)定,故①正確;

甲的極差是6.88元,乙的極差為27.47元,可知購買股票乙風險高但可能獲得高回報,故②正確;

通過折線圖可知股票甲的走勢相對平穩(wěn),股票乙的股價波動較大,故③正確;

通過折線圖可得乙再6月到8月明顯是下降趨勢,故④錯誤

故選C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求直線的普通方程和曲線的直角坐標方程;

2)若射線)與直線和曲線分別交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

討論的單調(diào)性;

時,若關(guān)于x的不等式恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙二射擊運動員分別對一目標射擊次,甲射中的概率為,乙射中的概率為,求:

(1)人都射中目標的概率; (2)人中恰有人射中目標的概率;

(3)人至少有人射中目標的概率; (4)人至多有人射中目標的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位為了響應疫情期間有序復工復產(chǎn)的號召,組織從疫區(qū)回來的甲、乙、丙、丁4名員工進行核酸檢測,現(xiàn)采用抽簽法決定檢測順序,在員工甲不是第一個檢測,員工乙不是最后一個檢測的條件下,員工丙第一個檢測的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正方體的棱長為2,,,分別是,,,的中點,則過且與平行的平面截正方體所得截面的面積為____,和該截面所成角的正弦值為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正方體的棱長為2,,,分別是,,的中點,則過且與平行的平面截正方體所得截面的面積為____和該截面所成角的正弦值為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】盒子內(nèi)有3個不同的黑球,5個不同的白球.

1)從中取出3個黑球、4個白球排成一列且4個白球兩兩不相鄰的排法有多少種?

2)從中任取6個球且白球的個數(shù)不比黑球個數(shù)少的取法有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線相交于兩點,與軸相交于點.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)求的值.

查看答案和解析>>

同步練習冊答案