【題目】如圖,類比三角形中位線定理“如果EF是三角形的中位線,則EF AB.”,在空間四面體(三棱錐)P﹣ABC中,“如果 , 則”.
科目:高中數學 來源: 題型:
【題目】某休閑農莊有一塊長方形魚塘ABCD,AB=50米,BC=25 米,為了便于游客休閑散步,該農莊決定在魚塘內建三條如圖所示的觀光走廊OE、EF和OF,考慮到整體規(guī)劃,要求O是AB的中點,點E在邊BC上,點F在邊AD上,且∠EOF=90°.
(1)設∠BOE=α,試將△OEF的周長l表示成α的函數關系式,并求出此函數的定義域;
(2)經核算,三條走廊每米建設費用均為4000元,試問如何設計才能使建設總費用最低并求出最低總費用.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex﹣ax﹣1,(a為實數),g(x)=lnx﹣x
(1)討論函數f(x)的單調區(qū)間;
(2)求函數g(x)的極值;
(3)求證:lnx<x<ex(x>0)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于無窮數列,記,若數列滿足:“存在,使得只要(且),必有”,則稱數列具有性質.
(Ⅰ)若數列滿足判斷數列是否具有性質?是否具有性質?
(Ⅱ)求證:“是有限集”是“數列具有性質”的必要不充分條件;
(Ⅲ)已知是各項為正整數的數列,且既具有性質,又具有性質,求證:存在整數,使得是等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給定橢圓C: + =1(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓”.已知橢圓C的離心率為 ,且經過點(0,1).
(1)求實數a,b的值;
(2)若過點P(0,m)(m>0)的直線l與橢圓C有且只有一個公共點,且l被橢圓C的伴隨圓C1所截得的弦長為2 ,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為了解高三年級學生寒假期間的學習情況,抽取甲、乙兩班,調查這兩個班的學生在寒假期間每天平均學習的時間(單位:小時),統計結果繪成頻率分布直方圖(如圖).已知甲、乙兩班學生人數相同,甲班學生每天平均學習時間在區(qū)間[2,4]的有8人.
(1)求直方圖中a的值及甲班學生每天平均學習時間在區(qū)間(10,12]的人數;
(2)從甲、乙兩個班每天平均學習時間大于10個小時的學生中任取4人參加測試,設4人中甲班學生的人數為ξ,求ξ的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1=1,an+1=2an﹣3(﹣1)n(n∈N*).
(1)若bn=a2n﹣1,求證:bn+1=4bn;
(2)求數列{an}的通項公式;
(3)若a1+2a2+3a3+…+nan>λ2n對一切正整數n恒成立,求實數λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,∠PAQ是村里一個小湖的一角,其中∠PAQ=60°.為了給村民營造豐富的休閑環(huán)境,村委會決定在直線湖岸AP與AQ上分別建觀光長廊AB與AC,其中AB是寬長廊,造價是800元/米;AC是窄長廊,造價是400元/米;兩段長廊的總造價預算為12萬元(恰好都用完);同時,在線段BC上靠近點B的三等分點D處建一個表演舞臺,并建水上通道AD(表演舞臺的大小忽略不計),水上通道的造價是600元/米.
(1)若規(guī)劃寬長廊AB與窄長廊AC的長度相等,則水上通道AD的總造價需多少萬元?
(2)如何設計才能使得水上通道AD的總造價最低?最低總造價是多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠為了解甲、乙兩條生產線生產的產品的質量,從兩條生產線生產的產品中隨機抽取各10件,測量產品中某種元素的含量(單位:毫克).如圖是測量數據的莖葉圖:
規(guī)定:當產品中的此種元素含量滿足≥18毫克時,該產品為優(yōu)等品.
(1)根據樣本數據,計算甲、乙兩條生產線產品質量的均值與方差,并說明哪條生產線的產品的質量相對穩(wěn)定;
(2)從乙廠抽出的上述10件產品中,隨機抽取3件,求抽到的3件產品中優(yōu)等品數ξ的分布列及其數學期望E(ξ).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com