【題目】如圖,在中,AB>AC,H為的垂心,M為邊BC的中點,點S在邊BC上且滿足∠BHM=∠CHS,點A在直線HS上的投影為P.證明:的外接圓與的外接圓相切.

【答案】見解析

【解析】

如圖,聯(lián)結AH并延長,與的外接圓交于點D

,與的外接圓交于點E.

易知,點D、H關于直線BC對稱.

故∠HCB=∠BCD=∠CBE.

.

因此,AE為外接圓的直徑.

又由CH=CD=EB,結合知四邊形CHBE為平行四邊形.

于是,EH過點M.

設B’、C’為點B、C在邊AC、AB上的投影.

延長EH,與的外接圓交于點Q.

由∠AQH=∠AQE=90°=∠APH,得A、Q、B’、H、C’、P六點共圓,且該圓以AH為直徑.

結合,有.

.

從而,Q、S、D三點共線.

得P、Q、S、M四點共圓,設此圓為圓T.

過點O作外接圓的切線.

,知TQ也為圓T的切線.

的外接圓與的外接圓相切.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】18屆國際籃聯(lián)籃球世界杯(世界男子籃球錦標賽更名為籃球世界杯后的第二屆世界杯)于2019831日至915日在中國的北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.中國隊12名球員在第一場和第二場得分的莖葉圖如圖所示,則下列說法錯誤的是(

A.第一場得分的中位數(shù)為B.第二場得分的平均數(shù)為

C.第一場得分的極差大于第二場得分的極差D.第一場與第二場得分的眾數(shù)相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學生學習的自律性很重要.某學校對自律性與學生成績是否有關進行了調(diào)研,從該校學生中隨機抽取了100名學生,通過調(diào)查統(tǒng)計得到列聯(lián)表的部分數(shù)據(jù)如下表:

自律性一般

自律性強

合計

成績優(yōu)秀

40

成績一般

20

合計

50

100

1)補全列聯(lián)表中的數(shù)據(jù);

2)判斷是否有的把握認為學生的自律性與學生成績有關.

參考公式及數(shù)據(jù):.

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】)已知c0,關于x的不等式:x+|x-2c|≥2的解集為R.求實數(shù)c的取值范圍;

(Ⅱ)若c的最小值為m,又p、q、r是正實數(shù),且滿足p+q+r=3m,求證:p2+q2+r2≥3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線上一點到焦點的距離,傾斜角為的直線經(jīng)過焦點,且與拋物線交于兩點、.

1)求拋物線的標準方程及準線方程;

2)若為銳角,作線段的中垂線軸于點.證明:為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,拋物線的焦點為,射線與拋物線相交于點,與其準線相交于點,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一次數(shù)學考試后,對高三文理科學生進行抽樣調(diào)查,調(diào)查其對本次考試的結果滿意或不滿意,現(xiàn)隨機抽取名學生的數(shù)據(jù)如下表所示:

滿意

不滿意

總計

文科

22

18

40

理科

48

12

60

總計

70

30

100

1)根據(jù)數(shù)據(jù),有多大的把握認為對考試的結果滿意與科別有關;

2)用分層抽樣方法在感覺不滿意的學生中隨機抽取名,理科生應抽取幾人;

3)在(2)抽取的名學生中任取2名,求文科生人數(shù)的期望.其中

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的左焦點為且離心率為,為橢圓上任意一點,的取值范圍為,.

(1)求橢圓的方程;

(2)如圖,設圓是圓心在橢圓上且半徑為的動圓,過原點作圓的兩條切線,分別交橢圓于,兩點.是否存在使得直線與直線的斜率之積為定值?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若的極大值點,求的值;

2)若上只有一個零點,求的取值范圍.

查看答案和解析>>

同步練習冊答案