【題目】已知函數(shù)(其中,且為常數(shù)).

(1)若對(duì)于任意的,都有成立,求的取值范圍;

(2)在(1)的條件下,若方程上有且只有一個(gè)實(shí)根,求的取值范圍.

【答案】(1);(2)

【解析】試題分析:(1)求導(dǎo)f′(x)=2(x﹣1)+a(﹣1)=(x﹣1)(2﹣),且f(1)=0+a(ln1﹣1+1)=0,從而討論以確定函數(shù)的單調(diào)性,從而解得;

(2)化簡f(x)+a+1=(x﹣1)2+a(lnx﹣x+1)+a+1,從而討論以確定函數(shù)的單調(diào)性,從而解得.

試題解析:

解(1)

當(dāng)時(shí),對(duì)于恒成立,上單調(diào)遞增

,此時(shí)命題成立;

當(dāng)時(shí),上單調(diào)遞減,上單調(diào)遞增,

當(dāng)時(shí),.這與題設(shè)矛盾.

的取值范圍是

(2)依題意,設(shè),

原題即為若上有且只有一個(gè)零點(diǎn),的取值范圍.

顯然函數(shù)的單調(diào)性是一致的.

當(dāng)時(shí),因?yàn)楹瘮?shù)在區(qū)間上遞減,上遞增,

所以上的最小值為,

由于,要使上有且只有一個(gè)零點(diǎn),

需滿足,解得;

當(dāng)時(shí),因?yàn)楹瘮?shù)上單調(diào)遞增,

,

所以此時(shí)上有且只有一個(gè)零點(diǎn);

當(dāng)時(shí),因?yàn)楹瘮?shù)上單調(diào)遞增,上單調(diào)遞減,上單調(diào)遞增,

又因?yàn)?/span>,所以當(dāng)時(shí),總有,

,

所以上必有零點(diǎn),又因?yàn)?/span>上單調(diào)遞增,

從而當(dāng)時(shí),上有且只有一個(gè)零點(diǎn).

綜上所述,當(dāng)時(shí),

方程上有且只有一個(gè)實(shí)根.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,平面,底面為直角梯形,,,,中點(diǎn).

(1)求證:平面;

(2)若直線與平面所成角的正切值為,的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列中,已知公差, ,且, 成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)求.

【答案】(1);(2)100

【解析】試題分析:(1)根據(jù)題意 , 成等比數(shù)列得求出d即可得通項(xiàng)公式;(2)求項(xiàng)的絕對(duì)前n項(xiàng)和,首先分清數(shù)列有多少項(xiàng)正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),然后正數(shù)項(xiàng)絕對(duì)值數(shù)值不變,負(fù)數(shù)項(xiàng)絕對(duì)值要變號(hào),從而得,得,由,得,∴ 計(jì)算 即可得出結(jié)論

解析:(1)由題意可得,則, ,

,即,

化簡得,解得(舍去).

.

(2)由(1)得時(shí),

,得,由,得,

.

.

點(diǎn)睛:對(duì)于數(shù)列第一問首先要熟悉等差和等比通項(xiàng)公式及其性質(zhì)即可輕松解決,對(duì)于第二問前n項(xiàng)的絕對(duì)值的和問題,首先要找到數(shù)列由多少正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),進(jìn)而找到絕對(duì)值所影響的項(xiàng),然后在求解即可得結(jié)論

型】解答
結(jié)束】
18

【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.

(I)請(qǐng)將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關(guān)系式;

(II)從兩家公司各隨機(jī)選取一名推銷員,對(duì)他們過去100天的銷售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請(qǐng)回答下面問題:

某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),是常數(shù)

Ⅰ)求曲線在點(diǎn)處的切線方程,并證明對(duì)任意,切線經(jīng)過定點(diǎn);

Ⅱ)證明:時(shí),有兩個(gè)零點(diǎn)、,且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E:=1(a>b>0)的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的三個(gè)頂點(diǎn),直線l:y=-x+3與橢圓E有且只有一個(gè)公共點(diǎn)T.

(1)求橢圓E的方程及點(diǎn)T的坐標(biāo);

(2)設(shè)O是坐標(biāo)原點(diǎn),直線l'平行于OT,與橢圓E交于不同的兩點(diǎn)A,B,且與直線l交于點(diǎn)P,證明:存在常數(shù)λ,使得|PT|2=λ|PA|·|PB|,并求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中,且為常數(shù)).

(1)若對(duì)于任意的,都有成立,求的取值范圍;

(2)在(1)的條件下,若方程上有且只有一個(gè)實(shí)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),關(guān)于的不等式的解集為,,設(shè)

)求的值.

如何取值時(shí),函數(shù)存在極值點(diǎn),并求出極值點(diǎn).

)若,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)時(shí)都取得極值.(1)求的值;(2)若對(duì), 恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(xy)=f(xf(y)且f(1)=.

(1)當(dāng)n∈N*時(shí),求f(n)的表達(dá)式;

(2)設(shè)ann·f(n),n∈N*,求證:a1a2a3+…+an<2;

(3)設(shè)bn=(9-n) ,n∈N*,Sn為{bn}的前n項(xiàng)和,當(dāng)Sn最大時(shí),求n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案