【題目】某房地產開發(fā)公司計劃在一樓區(qū)內建造一個長方形公園,公園由長方形的休閑區(qū)(陰影部分)和環(huán)公園人行道組成.已知休閑區(qū)的面積為4000平方米,人行道的寬分別為4米和10米.
(1)若設休閑區(qū)的長米,求公園所占面積關于的函數的解析式;
(2)要使公園所占面積最小,休閑區(qū)的長和寬該如何設計?
科目:高中數學 來源: 題型:
【題目】已知數列的前項和為, ,數列滿足點在直線上.
(1)求數列, 的通項, ;
(2)令,求數列的前項和;
(3)若,求對所有的正整數都有成立的的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列滿足, ,其中, , 為非零常數.
(1)若, ,求證: 為等比數列,并求數列的通項公式;
(2)若數列是公差不等于零的等差數列.
①求實數, 的值;
②數列的前項和構成數列,從中取不同的四項按從小到大排列組成四項子數列.試問:是否存在首項為的四項子數列,使得該子數列中的所有項之和恰好為2017?若存在,求出所有滿足條件的四項子數列;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙“十一”結束之后,某網站針對購物情況進行了調查,參與調查的人主要集中在[20,50]歲之間,若規(guī)定:購物600(含600元)以下者,稱為“理智購物”,購物超過600元者被網友形象的稱為“剁手黨”,得到如下統(tǒng)計表:
分組編號 | 年齡分組 | 球迷 | 所占比例 |
1 | [20,25) | 1000 | 0.5 |
2 | [25,30) | 1800 | 0.6 |
3 | [30,35) | 1200 | 0.5 |
4 | [35,40) | a | 0.4 |
5 | [40,45) | 300 | 0.2 |
6 | [45,50] | 200 | 0.1 |
若參與調查的“理智購物”總人數為7720人.
(1)求a的值;
(2)從年齡在[20,35)的“剁手黨”中按照年齡區(qū)間分層抽樣的方法抽取20人; ①從這20人中隨機抽取2人,求這2人恰好屬于同一年齡區(qū)間的概率;
②從這20人中隨機抽取2人,用ζ表示年齡在[20,25)之間的人數,求ξ的分布列及期望值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x(lnx﹣ax).
(1)a= 時,求f(x)在點(1,f(1))處的切線方程;
(2)若f(x)存在兩個不同的極值x1 , x2 , 求a的取值范圍;
(3)在(2)的條件下,求f(x)在(0,a]上的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,點A是以線段BC為直徑的圓O上一點,AD⊥BC于點D,過點B作圓O的切線,與CA的延長線相交于點E,點G是AD的中點,連接CG并延長與BE相交于點F,延長AF與CB的延長線相交于點P.
(1)求證:BF=EF;
(2)求證:PA是圓O的切線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知公差不為0的等差數列{an}的前n項和為Sn, S3=a4+6,且a1, a4, a13成等比數列.
(1)求數列{an}的通項公式;
(2)設,求數列{bn}的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了響應教育部頒布的《關于推進中小學生研學旅行的意見》,某校計劃開設八門研學旅行課程,并對全校學生的選擇意向進行調查(調查要求全員參與,每個學生必須從八門課程中選出唯一一門課程).本次調查結果整理成條形圖如下.
上圖中,已知課程為人文類課程,課程為自然科學類課程.為進一步研究學生選課意向,結合上面圖表,采取分層抽樣方法從全校抽取的學生作為研究樣本組(以下簡稱“組M”).
(Ⅰ)在“組M”中,選擇人文類課程和自然科學類課程的人數各有多少?
(Ⅱ)為參加某地舉辦的自然科學營活動,從“組M”所有選擇自然科學類課程的同學中隨機抽取4名同學前往,其中選擇課程F或課程H的同學參加本次活動,費用為每人1500元,選擇課程G的同學參加,費用為每人2000元.
(ⅰ)設隨機變量表示選出的4名同學中選擇課程的人數,求隨機變量的分布列;
(ⅱ)設隨機變量表示選出的4名同學參加科學營的費用總和,求隨機變量的期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com