【題目】(1)已知一個圓過直線與圓的兩個交點,且面積最小,求此圓的方程;
(2)拋物線的頂點在原點,以橢圓的右焦點為焦點,過點的直線與拋物線有且僅有一個公共點,求直線的方程.
【答案】(1);(2), 或.
【解析】試題分析: (1)聯(lián)立兩圓方程求得兩交點, ,可得圓心和半徑,進而得圓的方程.
(2)由題易得拋物線的方程為.設(shè)直線方程與拋物線方程聯(lián)立,解可得.
試題解析:(1)聯(lián)立,得,
所以,兩交點, ,易知以線段為直徑的圓面積最小,圓心為,
半徑為,
于是,所求圓的方程為.
(2)依題意,設(shè)拋物線的方程為,
∵橢圓的右焦點為,∴,
∴拋物線的方程為.
①當(dāng)直線的斜率不存在時,直線為軸與拋物線相切,符合題意.
②當(dāng)直線的斜率為0時,直線為與拋物線的對稱軸平行,符合題意.
③當(dāng)直線的斜率存在且不為0時,設(shè)直線的方程為,
將代入,得,
由,得,
∴直線方程為,
綜上所述,直線的方程為, 或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù);
(1)求函數(shù)f(x)的周期以及單調(diào)遞增區(qū)間;
(2)在給出的直角坐標系中,請用五點作圖法畫出f(x)在區(qū)間[0,π]上的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A={x| <3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定義A﹣B={x|x∈A且xB},求A﹣B和B﹣A.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生其中考試語文成績的頻率分布直方圖所示,其中成績分組區(qū)間是:
.
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分;
(3)若這100名學(xué)生語文某些分數(shù)段的人數(shù)與數(shù)學(xué)成績相應(yīng)分數(shù)段的人數(shù)之比如下表所示,
求數(shù)學(xué)成績在之外的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于x的二次方程px2+(p﹣1)x+p+1=0有兩個不相等的正根,且一根大于另一根的兩倍,求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}的前n項和為Tn,且,令cn=b2n(n∈N*),求數(shù)列{cn}的前n項和Rn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中
①函數(shù)f(x)=( )x的遞減區(qū)間是(﹣∞,+∞);
②若函數(shù)f(x)= ,則函數(shù)定義域是(1,+∞);
③已知(x,y)在映射f下的象是(x+y,x﹣y),那么(3,1)在映射f下的象是(4,2).
其中正確命題的序號為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=2x2﹣4x.
(1)指出圖象的開口方向、對稱軸方程、頂點坐標;
(2)用描點法畫出它的圖象;
(3)求出函數(shù)的最值,并分析函數(shù)的單調(diào)性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com