【題目】某中學共有1000人,其中男生700人,女生300人,為了了解該校學生每周平均體育鍛煉時間的情況以及經(jīng)常進行體育鍛煉的學生是否與性別有關(guān)(經(jīng)常進行體育鍛煉是指:周平均體育鍛煉時間不少于4小時),現(xiàn)在用分層抽樣的方法從中收集200位學生每周平均體育鍛煉時間的樣本數(shù)據(jù)(單位:小時),其頻率分布直方圖如圖.已知在樣本數(shù)據(jù)中,有40位女生的每周平均體育鍛煉時間超過4小時,根據(jù)獨立性檢驗原理( )
附:,其中.
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
A.有95%的把握認為“該校學生每周平均體育鍛煉時間與性別無關(guān)”
B.有90%的把握認為“該校學生每周平均體育鍛煉時間與性別有關(guān)”
C.有90%的把握認為“該校學生每周平均體育鍛煉時間與性別無關(guān)”
D.有95%的把握認為“該校學生每周平均體育鍛煉時間與性別有關(guān)”
【答案】B
【解析】
根據(jù)分層抽樣以及頻率分布直方圖列聯(lián)表,再計算,結(jié)合表中的數(shù)據(jù)判斷即可.
由頻率分布直方圖可知, 平均體育鍛煉時間不少于4小時的頻率為,故經(jīng)常進行體育鍛煉的學生人.又其中有40位女生的每周平均體育鍛煉時間超過4小時,故有位男生經(jīng)常鍛煉.根據(jù)分層抽樣的方法可知,樣本中男生的人數(shù)為,女生有.列出列聯(lián)表有:
男生 | 女生 | 總計 | |
經(jīng)常鍛煉 | 110 | 40 | 150 |
不經(jīng)常鍛煉 | 30 | 20 | 50 |
總計 | 140 | 60 | 200 |
故,因為.
故有90%的把握認為“該校學生每周平均體育鍛煉時間與性別有關(guān)”.
故選:B
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .若g(x)存在2個零點,則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】動點與定點的距離和該動點到直線的距離的比是常數(shù).
(1)求動點軌跡方程;
(2)已知點,問在軸上是否存在一點,使得過點的任一條斜率不為0的弦交曲線于兩點,都有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了治理空氣污染,某市設(shè)個監(jiān)測站用于監(jiān)測空氣質(zhì)量指數(shù),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有、、個監(jiān)測站,并以個監(jiān)測站測得的的平均值為依據(jù)播報該市的空氣質(zhì)量.
(1)若某日播報的為,已知輕度污染區(qū)平均值為,中度污染區(qū)平均值為,求重試污染區(qū)平均值;
(2)如圖是年月份天的的頻率分布直方圖,月份僅有天在內(nèi).
①某校參照官方公布的,如果周日小于就組織學生參加戶外活動,以統(tǒng)計數(shù)據(jù)中的頻率為概率,求該校學生周日能參加戶外活動的概率;
②環(huán)衛(wèi)部門從月份不小于的數(shù)據(jù)中抽取兩天的數(shù)據(jù)進行研究,求抽取的這兩天中值都在的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新能源汽車已經(jīng)走進我們的生活,逐漸為大家所青睞.現(xiàn)在有某品牌的新能源汽車在甲市進行預售,預售場面異常火爆,故該經(jīng)銷商采用競價策略基本規(guī)則是:①競價者都是網(wǎng)絡(luò)報價,每個人并不知曉其他人的報價,也不知道參與競價的總?cè)藬?shù);②競價采用“一月一期制”,當月競價時間截止后,系統(tǒng)根據(jù)當期汽車配額,按照競價人的出價從高到低分配名額.某人擬參加2020年6月份的汽車競價,他為了預測最低成交價,根據(jù)網(wǎng)站的公告,統(tǒng)計了最近5個月參與競價的人數(shù)(如下表)
月份 | 2020.01 | 2020.02 | 2020.03 | 2020.04 | 2020.05 |
月份編號 | 1 | 2 | 3 | 4 | 5 |
競拍人數(shù)(萬人) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)由收集數(shù)據(jù)的散點圖發(fā)現(xiàn),可用線性回歸模型擬合競價人數(shù)y(萬人)與月份編號t之間的相關(guān)關(guān)系.請用最小二乘法求y關(guān)于t的線性回歸方程:,并預測2020年6月份(月份編號為6)參與競價的人數(shù);
(2)某市場調(diào)研機構(gòu)對200位擬參加2020年6月份汽車競價人員的報價進行了一個抽樣調(diào)查,得到如表所示的頻數(shù)表:
報價區(qū)間(萬元) | ||||||
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
(i)求這200位競價人員報價的平均值和樣本方差s2(同一區(qū)間的報價用該價格區(qū)間的中點值代替)
(ii)假設(shè)所有參與競價人員的報價X可視為服從正態(tài)分布且μ與σ2可分別由(i)中所示的樣本平均數(shù)及s2估計.若2020年月6份計劃提供的新能源車輛數(shù)為3174,根據(jù)市場調(diào)研,最低成交價高于樣本平均數(shù),請你預測(需說明理由)最低成交價.
參考公式及數(shù)據(jù):
①回歸方程,其中
②
③若隨機變量X服從正態(tài)分布則
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的短軸長為2,離心率.過橢圓的右焦點作直線l(不與軸重合)與橢圓交于不同的兩點,.
(1)求橢圓的方程;
(2)試問在軸上是否存在定點,使得直線與直線恰好關(guān)于軸對稱?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(γ為參數(shù)),曲線的參數(shù)方程為(s為參數(shù)).以坐標原點為極點,x軸的正半軸為極軸建立極坐秘系,已知點A的極坐標為,直線l:()與交于點B,其中.
(1)求曲線的極坐標方程以及曲線的普通方程;
(2)過點A的直線m與交于M,N兩點,若,且,求α的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com