【題目】三國魏人劉徽,自撰《海島算經(jīng)》,專論測高望遠(yuǎn).其中有一題今有望海島,立兩表齊,高三丈,前後相去千步,令後表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從後表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高及去表各幾何?翻譯如下:要測量海島上一座山峰的高度,立兩根高三丈的標(biāo)桿,前后兩竿相距,使后標(biāo)桿桿腳與前標(biāo)桿桿腳與山峰腳在同一直線上,從前標(biāo)桿桿腳退行步到,人眼著地觀測到島峰,、、、三點(diǎn)共線,從后標(biāo)桿桿腳退行步到,人眼著地觀測到島峰,、、三點(diǎn)也共線,山峰的高度__________步.(古制尺,步)

【答案】1255

【解析】

試題分析:如圖,由題意步,設(shè)步,,

,,同理,由題意,即,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中中,側(cè)面為矩形, 的中點(diǎn), 交于點(diǎn),且平面

1)證明: ;

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期為π.

(Ⅰ)求f()的值;

(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x0,x0+是函數(shù)f(x)=cos2wxsin2wx(ω>0)的兩個(gè)相鄰的零點(diǎn)

(1)求的值;

(2)若對(duì)任意,都有f(x)﹣m≤0,求實(shí)數(shù)m的取值范圍.

(3)若關(guān)于的方程上有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)據(jù)x1,x2,x3,…,xn是普通職工n(n≥3,n∈N*)個(gè)人的年收入,設(shè)這n個(gè)數(shù)據(jù)的中位數(shù)為x,平均數(shù)為y,方差為z,如果再加上世界首富的年收入xn+1,則這n+1個(gè)數(shù)據(jù)中,下列說法正確的是

A. 年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變

B. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大

C. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變

D. 年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P是單位圓上的動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線與射線y=x(x≥0)交于點(diǎn)Q,與x軸交于點(diǎn)M.記∠MOP=α,且α∈(﹣, ).

(Ⅰ)若sinα=,求cos∠POQ;

(Ⅱ)求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過點(diǎn),并且直線平分圓.

)求圓的方程;

)若過點(diǎn),且斜率為的直線與圓有兩個(gè)不同的交點(diǎn).

)求實(shí)數(shù)的取值范圍;

)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,角A,BC所對(duì)的邊分別為a,b,c,

(1)求角A的大。

(2)若的角平分線, ,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)記的極小值為,求的最大值;

2)若對(duì)任意實(shí)數(shù)恒有,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案