【題目】已知函數(shù)fx)=Acosωx+φ)(A0,ω0φ0)的圖象與y軸的交點(diǎn)為(0,1),它的一個(gè)最高點(diǎn)和一個(gè)最低點(diǎn)的坐標(biāo)分別為(x0,2),(x0,﹣2),

1)若函數(shù)fx)的最小正周期為π,求函數(shù)fx)的解析式;

2)當(dāng)x∈(x0x0)時(shí),fx)圖象上有且僅有一個(gè)最高點(diǎn)和一個(gè)最低點(diǎn),且關(guān)于x的方程fx)﹣a0在區(qū)間[,]上有且僅有一解,求實(shí)數(shù)a的取值范圍.

【答案】(1)fx)=2cos2x)(2)(﹣1,]{2}

【解析】

1)由最高點(diǎn)縱坐標(biāo)得A2,由題意Tπ,得到ω2,從而有fx)=2cos2x+φ)再將(01)代入,求得cosφ,結(jié)合φ0的條件,得到φ,從而確定出函數(shù)fx)的解析式;

2)根據(jù)當(dāng)x∈(x0,x0)時(shí),fx)圖象上有且僅有一個(gè)最高點(diǎn)和一個(gè)最低點(diǎn),x0x0,得到Tπ,求得ω2,求得fx)=2cos2x),當(dāng)x[,]時(shí),2x[,],研究函數(shù)y2cost,t[],得到結(jié)果.

1)由最高點(diǎn)縱坐標(biāo)得A2

Tπ2π÷ωω2;

fx)=2cos2x+φ),

代入點(diǎn)(0,1cosφ;

φ0,∴φ

fx)=2cos2x).

2)∵當(dāng)x∈(x0,x0)時(shí),fx)圖象上有且僅有一個(gè)最高點(diǎn)和一個(gè)最低點(diǎn),

x0x0Tπω2;

fx)=2cos2x).

fx)﹣a0fx)=a

當(dāng)x[,]時(shí),2x[,],

t2x.則t[,]

y2cost,t[],

函數(shù)y2cost[π]上單調(diào)遞減,y2cost[2];

函數(shù)y2cost[π]上單調(diào)遞增,y2cost[2,﹣1];

a∈(﹣1,]{2};

故實(shí)數(shù)a的取值范圍是:(1,]{2}

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)部分圖象如圖所示.

1)求函數(shù)的解析式;

2)將函數(shù)的圖象做怎樣的變換可以得到函數(shù)的圖象;

3)若方程上有兩個(gè)不相等的實(shí)數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中常數(shù)

1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

2)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為,若內(nèi)恒成立,則稱為函數(shù)類對(duì)稱點(diǎn),當(dāng)時(shí),試問是否存在類對(duì)稱點(diǎn),若存在,請(qǐng)至少求出一個(gè)類對(duì)稱點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某地區(qū)中小學(xué)生人數(shù)和近視情況如圖1和圖2所示.為了解該地區(qū)中小學(xué)生的近視形成原因,用分層抽樣的方法抽取2%的學(xué)生作為樣本進(jìn)行調(diào)查.

(1)求樣本容量和抽取的高中生近視人數(shù)分別是多少?

(2)在抽取的名高中生中,平均每天學(xué)習(xí)時(shí)間超過9小時(shí)的人數(shù)為,其中有12名學(xué)生近視,請(qǐng)完成高中生平均每天學(xué)習(xí)時(shí)間與近視的列聯(lián)表:

平均學(xué)習(xí)時(shí)間不超過9小時(shí)

平均學(xué)習(xí)時(shí)間超過9小時(shí)

總計(jì)

不近視

近視

總計(jì)

(3)根據(jù)(2)中的列聯(lián)表,判斷是否有的把握認(rèn)為高中生平均每天學(xué)習(xí)時(shí)間與近視有關(guān)?

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程分別為,.

(1)將直線的參數(shù)方程化為極坐標(biāo)方程,將的極坐標(biāo)方程化為參數(shù)方程;

(2)當(dāng)時(shí),直線交于,兩點(diǎn),與交于,兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知直線2xy﹣1=0與直線x﹣2y+1=0交于點(diǎn)P

求過點(diǎn)P且平行于直線3x+4y﹣15=0的直線的方程;(結(jié)果寫成直線方程的一般式)

求過點(diǎn)P并且在兩坐標(biāo)軸上截距相等的直線方程(結(jié)果寫成直線方程的一般式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時(shí)給出的“趙爽弦圖”(如下圖),四個(gè)全等的直角三角形(朱實(shí)),可以圍成一個(gè)大的正方形,中空部分為一個(gè)小正方形(黃實(shí)).若直角三角形中一條較長(zhǎng)的直角邊為8,直角三角形的面積為24,若在上面扔一顆玻璃小球,則小球落在黃實(shí)區(qū)域的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018101日起,中華人民共和國(guó)個(gè)人所得稅新規(guī)定,公民月工資、薪金所得不超過5000元的部分不必納稅,超過5000元的部分為全月應(yīng)納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:

全月應(yīng)納稅所得額

稅率

不超過1500元的部分

3

超過1500元不超過4500元的部分

10

超過4500元不超過9000元的部分

20

超過9000元不超過35000

25

如果小李10月份全月的工資、薪金為7000元,那么他應(yīng)該納稅多少元?

如果小張10月份交納稅金425元,那么他10月份的工資、薪金是多少元?

寫出工資、薪金收入與應(yīng)繳納稅金的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,為邊的中點(diǎn),將沿直線翻折成.若為線段的中點(diǎn),則在翻折過程中,下面四個(gè)命題中不正確的是(

A. 是定值

B. 點(diǎn)在某個(gè)球面上運(yùn)動(dòng)

C. 存在某個(gè)位置,使

D. 存在某個(gè)位置,使平面

查看答案和解析>>

同步練習(xí)冊(cè)答案