精英家教網 > 高中數學 > 題目詳情

【題目】某單位共有員工45人,其中男員工27人,女員工18.上級部門為了對該單位員工的工作業(yè)績進行評估,采用按性別分層抽樣的方法抽取5名員工進行考核.

1)求抽取的5人中男、女員工的人數分別是多少;

2)考核前,評估小組從抽取的5名員工中,隨機選出3人進行訪談.求選出的3人中有1位男員工的概率;

3)考核分筆試和答辯兩項.5名員工的筆試成績分別為78,85,89,92,96;結合答辯情況,他們的考核成績分別為95,88,102106,99.5名員工筆試成績與考核成績的方差分別記為,試比較的大小.(只需寫出結論)

【答案】1)男員工3人,女員工2人(23

【解析】

1)根據分層抽樣等比例抽取的性質,列式計算即可;

2)分別計算5人中選出3人的全部可能性和3人中有1人為男員工的可能性,用古典概型概率計算公式即可求得;

3)根據方差的性質,即可判斷.

1)抽取的5人中男員工的人數為

女員工的人數為.

2)由(1)可知,抽取的5名員工中,有男員工3人,女員工2.

所以,根據題意,從人中抽取3人,共有種可能;

其中恰有1位是男員工共有種可能,

故滿足題意的概率為:,

所以,選出的3人中有1為男員工的概率是.

3)筆試成績?yōu)?/span>78,85,8992,96;

考核成績可以理解為這5個數據每個數據加10得到,

根據方差的性質,則兩組數據的方差保持不變.

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】科研人員在對人體脂肪含量和年齡之間關系的研究中,獲得了一些年齡和脂肪含量的簡單隨機樣本數據,如下表:

(年齡/歲)

26

27

39

41

49

53

56

58

60

61

(脂肪含量/%)

14.5

17.8

21.2

25.9

26.3

29.6

31.4

33.5

35.2

34.6

根據上表的數據得到如下的散點圖.

(1)根據上表中的樣本數據及其散點圖:

(i)求;

(i)計算樣本相關系數(精確到0.01),并刻畫它們的相關程度.

(2)若關于的線性回歸方程為,求的值(精確到0.01),并根據回歸方程估計年齡為50歲時人體的脂肪含量.

附:參考數據:img src="http://thumb.zyjl.cn/Upload/2019/08/18/08/786210e5/SYS201908180802150104289801_ST/SYS201908180802150104289801_ST.007.png" width="51" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,,,,,,

參考公式:相關系數

回歸方程中斜率和截距的最小二乘估計公式分別為,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,是邊長為1的等邊三角形,M為線段中點,.

(1)求證:;

(2)求直線與平面所成角的正弦值;

(3)線段上是否存在點N,使得直線平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,若方程有五個不同的實數根,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 若不等式對任意上恒成立,則實數的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示在四棱錐中,下底面為正方形,平面平面為以為斜邊的等腰直角三角形,,若點是線段上的中點.

1)證明平面.

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知過點的直線與橢圓交于不同的兩點,其中,為坐標原點

(1),求的面積;

(2)在軸上是否存在定點,使得直線的斜率互為相反數?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,

1)證明:平面

2)求二面角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2016年時紅軍長征勝利80周年,某市電視臺舉辦紀念紅軍長征勝利80周年知識問答,宣傳長征精神.首先在甲、乙、丙、丁四個不同的公園進行支持簽名活動.

公園

獲得簽名人數

45

60

30

15

然后在各公園簽名的人中按分層抽樣的方式抽取10名幸運之星回答問題,從10個關于長征的問題中隨機抽取4個問題讓幸運之星回答,全部答對的幸運之星獲得一份紀念品.

(Ⅰ)求此活動中各公園幸運之星的人數;

(Ⅱ)若乙公園中每位幸運之星對每個問題答對的概率均為,求恰好2位幸運之星獲得紀念品的概率;

(Ⅲ)若幸運之星小李對其中8個問題能答對,而另外2個問題答不對,記小李答對的問題數為,求的分布列及數學期望

查看答案和解析>>

同步練習冊答案