【題目】函數(shù) , 定義使f(1)f(2)f(3)…f(k)為整數(shù)的數(shù)k(k∈N*)叫做企盼數(shù),則在區(qū)間[1,2013]內(nèi)這樣的企盼數(shù)共有 個(gè).

【答案】9
【解析】解:令g(k)=f(1)f(2)f(3)…f(k),
∵f(k)=log(k+1)(k+2)=
∴g(k)==log2(k+2).
要使g(k)成為企盼數(shù),則k+2=2n , n∈N*
∵k∈[1,2013],∴(k+2)∈[3,2015],即2n∈[3,2015].
∵22=4,210=1024,211=2048.
可取n=2,3,…,10.
因此在區(qū)間[1,2013]內(nèi)這樣的企盼數(shù)共有9個(gè).
【考點(diǎn)精析】根據(jù)題目的已知條件,利用換底公式的應(yīng)用的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握換底公式:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(其中 )的圖象如圖所示,為了得到g(x)=sin2x的圖象,則只需將f(x)的圖象(
A.向右平移 個(gè)長(zhǎng)度單位
B.向右平移 個(gè)長(zhǎng)度單位
C.向左平移 個(gè)長(zhǎng)度單位
D.向左平移 個(gè)長(zhǎng)度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}滿(mǎn)足an+1+(﹣1)nan=3n﹣1,則{an}的前60項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,a2+c2=b2+ ac. (Ⅰ)求∠B的大;
(Ⅱ)求 cosA+cosC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿(mǎn)足b1=1,b2= ,anbn+1+bn+1=nbn . (Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}滿(mǎn)足 =1,公差d∈(﹣1,0),當(dāng)且僅當(dāng)n=9時(shí),數(shù)列{an}的前n項(xiàng)和Sn取得最大值,求該數(shù)列首項(xiàng)a1的取值范圍(
A.( ,
B.[ , ]
C.( ,
D.[ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊為a,b,c,角A,B,C的大小成等差數(shù)列,向量 =(sin ,cos ),=(cos ,﹣ cos ),f(A)= ,
(1)若f(A)=﹣ ,試判斷三角形ABC的形狀;
(2)若b= ,a= ,求邊c及SABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓心在y軸上,半徑為1,且過(guò)點(diǎn)(1,2)的圓的方程為(
A.x2+(y﹣2)2=1
B.x2+(y+2)2=1
C.(x﹣1)2+(y﹣3)2=1
D.x2+(y﹣3)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,且右準(zhǔn)線(xiàn)方程為x=5.
(1)求橢圓方程;
(2)過(guò)橢圓右焦點(diǎn)F作斜率為1的直線(xiàn)l與橢圓C交于A,B兩點(diǎn),P為橢圓上一動(dòng)點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案